import gradio as gr import torch from torchvision.transforms import transforms import numpy as np from typing import Optional import torch.nn as nn import os from utils import page_utils class BasicBlock(nn.Module): """ResNet Basic Block. Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels stride : int, optional Convolution stride size, by default 1 identity_downsample : Optional[torch.nn.Module], optional Downsampling layer, by default None """ def __init__(self, in_channels: int, out_channels: int, stride: int = 1, identity_downsample: Optional[torch.nn.Module] = None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size = 3, stride = stride, padding = 1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size = 3, stride = 1, padding = 1) self.bn2 = nn.BatchNorm2d(out_channels) self.identity_downsample = identity_downsample def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply forward computation.""" identity = x x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) # Apply an operation to the identity output. # Useful to reduce the layer size and match from conv2 output if self.identity_downsample is not None: identity = self.identity_downsample(identity) x += identity x = self.relu(x) return x class ResNet18(nn.Module): """Construct ResNet-18 Model. Parameters ---------- input_channels : int Number of input channels num_classes : int Number of class outputs """ def __init__(self, input_channels, num_classes): super(ResNet18, self).__init__() self.conv1 = nn.Conv2d(input_channels, 64, kernel_size = 7, stride = 2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1) self.layer1 = self._make_layer(64, 64, stride = 1) self.layer2 = self._make_layer(64, 128, stride = 2) self.layer3 = self._make_layer(128, 256, stride = 2) self.layer4 = self._make_layer(256, 512, stride = 2) # Last layers self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def identity_downsample(self, in_channels: int, out_channels: int) -> nn.Module: """Downsampling block to reduce the feature sizes.""" return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size = 3, stride = 2, padding = 1), nn.BatchNorm2d(out_channels) ) def _make_layer(self, in_channels: int, out_channels: int, stride: int) -> nn.Module: """Create sequential basic block.""" identity_downsample = None # Add downsampling function if stride != 1: identity_downsample = self.identity_downsample(in_channels, out_channels) return nn.Sequential( BasicBlock(in_channels, out_channels, identity_downsample=identity_downsample, stride=stride), BasicBlock(out_channels, out_channels) ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.shape[0], -1) x = self.fc(x) return x model = ResNet18(1, 5) checkpoint = torch.load('acc=0.94.ckpt', map_location=torch.device('cpu')) # The state dict will contains net.layer_name # Our model doesn't contains `net.` so we have to rename it state_dict = checkpoint['state_dict'] for key in list(state_dict.keys()): if 'net.' in key: state_dict[key.replace('net.', '')] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) model.eval() class_names = ['abdominal', 'adult', 'others', 'pediatric', 'spine'] class_names.sort() examples_dir = "sample" transformation_pipeline = transforms.Compose([ transforms.ToPILImage(), transforms.Grayscale(num_output_channels=1), transforms.CenterCrop((384, 384)), transforms.ToTensor(), transforms.Normalize(mean=[0.50807575], std=[0.20823]) ]) def preprocess_image(image: np.ndarray): """Preprocess the input image. Note that the input image is in RGB mode. Parameters ---------- image: np.ndarray Input image from callback. """ image = transformation_pipeline(image) image = torch.unsqueeze(image, 0) return image def image_classifier(inp): """Image Classifier Function. Parameters ---------- inp: Optional[np.ndarray] = None Input image from callback Returns ------- Dict A dictionary class names and its probability """ # If input not valid, return dummy data or raise error if inp is None: return {'cat': 0.3, 'dog': 0.7} # preprocess image = preprocess_image(inp) image = image.to(dtype=torch.float32) # inference result = model(image) # postprocess result = torch.nn.functional.softmax(result, dim=1) # apply softmax result = result[0].detach().numpy().tolist() # take the first batch labeled_result = {name:score for name, score in zip(class_names, result)} return labeled_result # gradio code block for input and output with gr.Blocks() as app: gr.Markdown("# Lung Cancer Classification") with open('index.html', encoding="utf-8") as f: description = f.read() # gradio code block for input and output with gr.Blocks(theme=gr.themes.Default(primary_hue=page_utils.KALBE_THEME_COLOR, secondary_hue=page_utils.KALBE_THEME_COLOR).set( button_primary_background_fill="*primary_600", button_primary_background_fill_hover="*primary_500", button_primary_text_color="white", )) as app: with gr.Column(): gr.HTML(description) with gr.Row(): with gr.Column(): inp_img = gr.Image() with gr.Row(): clear_btn = gr.Button(value="Clear") process_btn = gr.Button(value="Process", variant="primary") with gr.Column(): out_txt = gr.Label(label="Probabilities", num_top_classes=3) process_btn.click(image_classifier, inputs=inp_img, outputs=out_txt) clear_btn.click(lambda:( gr.update(value=None), gr.update(value=None) ), inputs=None, outputs=[inp_img, out_txt]) gr.Markdown("## Image Examples") gr.Examples( examples=[os.path.join(examples_dir, "1.2.410.200067.100.3.20180329.854150923.18613.1.1.dicom.jpeg"), os.path.join(examples_dir, "1b6a707131f787fe37d3ea40d2011d43.dicom.jpeg"), os.path.join(examples_dir, "2e3204c2bb7a8fcdd6ec1ed547e2967e.dicom.jpeg"), os.path.join(examples_dir, "10.127.133.1137.156.1251.20190404101039.dcm.jpeg"), os.path.join(examples_dir, "badaec3e4d5f382ebf0b51ba2c917cea.dicom.jpeg"), ], inputs=inp_img, outputs=out_txt, fn=image_classifier, cache_examples=False, ) gr.Markdown(line_breaks=True, value='Author: Jason Adrian (jasonadriann6@gmail.com)
') # demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label") app.launch(share=True)