import torch import torch.nn as nn import torch.nn.functional as F import math #import pytorch_colors as colors import numpy as np class enhance_net_nopool(nn.Module): def __init__(self): super(enhance_net_nopool, self).__init__() self.relu = nn.ReLU(inplace=True) number_f = 32 self.e_conv1 = nn.Conv2d(3,number_f,3,1,1,bias=True) self.e_conv2 = nn.Conv2d(number_f,number_f,3,1,1,bias=True) self.e_conv3 = nn.Conv2d(number_f,number_f,3,1,1,bias=True) self.e_conv4 = nn.Conv2d(number_f,number_f,3,1,1,bias=True) self.e_conv5 = nn.Conv2d(number_f*2,number_f,3,1,1,bias=True) self.e_conv6 = nn.Conv2d(number_f*2,number_f,3,1,1,bias=True) self.e_conv7 = nn.Conv2d(number_f*2,24,3,1,1,bias=True) self.maxpool = nn.MaxPool2d(2, stride=2, return_indices=False, ceil_mode=False) self.upsample = nn.UpsamplingBilinear2d(scale_factor=2) def forward(self, x): x1 = self.relu(self.e_conv1(x)) # p1 = self.maxpool(x1) x2 = self.relu(self.e_conv2(x1)) # p2 = self.maxpool(x2) x3 = self.relu(self.e_conv3(x2)) # p3 = self.maxpool(x3) x4 = self.relu(self.e_conv4(x3)) x5 = self.relu(self.e_conv5(torch.cat([x3,x4],1))) # x5 = self.upsample(x5) x6 = self.relu(self.e_conv6(torch.cat([x2,x5],1))) x_r = F.tanh(self.e_conv7(torch.cat([x1,x6],1))) r1,r2,r3,r4,r5,r6,r7,r8 = torch.split(x_r, 3, dim=1) x = x + r1*(torch.pow(x,2)-x) x = x + r2*(torch.pow(x,2)-x) x = x + r3*(torch.pow(x,2)-x) enhance_image_1 = x + r4*(torch.pow(x,2)-x) x = enhance_image_1 + r5*(torch.pow(enhance_image_1,2)-enhance_image_1) x = x + r6*(torch.pow(x,2)-x) x = x + r7*(torch.pow(x,2)-x) enhance_image = x + r8*(torch.pow(x,2)-x) r = torch.cat([r1,r2,r3,r4,r5,r6,r7,r8],1) return enhance_image_1,enhance_image,r