Spaces:
Running
Running
import os | |
import imageio | |
import numpy as np | |
import torch | |
import torchvision | |
import cv2 | |
from einops import rearrange | |
from PIL import Image | |
def color_transfer(sc, dc): | |
""" | |
Transfer color distribution from of sc, referred to dc. | |
Args: | |
sc (numpy.ndarray): input image to be transfered. | |
dc (numpy.ndarray): reference image | |
Returns: | |
numpy.ndarray: Transferred color distribution on the sc. | |
""" | |
def get_mean_and_std(img): | |
x_mean, x_std = cv2.meanStdDev(img) | |
x_mean = np.hstack(np.around(x_mean, 2)) | |
x_std = np.hstack(np.around(x_std, 2)) | |
return x_mean, x_std | |
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB) | |
s_mean, s_std = get_mean_and_std(sc) | |
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB) | |
t_mean, t_std = get_mean_and_std(dc) | |
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean | |
np.putmask(img_n, img_n > 255, 255) | |
np.putmask(img_n, img_n < 0, 0) | |
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB) | |
return dst | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(Image.fromarray(x)) | |
if color_transfer_post_process: | |
for i in range(1, len(outputs)): | |
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0]))) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
if imageio_backend: | |
if path.endswith("mp4"): | |
imageio.mimsave(path, outputs, fps=fps) | |
else: | |
imageio.mimsave(path, outputs, duration=(1000 * 1/fps)) | |
else: | |
if path.endswith("mp4"): | |
path = path.replace('.mp4', '.gif') | |
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0) | |