import gradio as gr import numpy as np import torch from PIL import Image from models.custom_resnet import CustomResNet # Run Interface def run_inference(input_image, gradcam=False, gradcam_layer=3, gradcam_num = 3, gradcam_opacity=0.5, misclassified_num=5, top_classes=10): """Run inference on a CIFAR-10 image. Args: image: The image to be classified. gradcam: Whether to show GradCAM images. gradcam_layer: The layer from which to generate GradCAM images. gradcam_opacity: The opacity of the GradCAM images. misclassified: Whether to show misclassified images. misclassified_num: The number of misclassified images to show. top_classes: The number of top classes to show. Returns: The classification results, including the predicted class, the top classes, and the GradCAM images (if requested). """ # # Load the CIFAR-10 model # model = CustomResNet() # checkpoint = torch.load('weight/epoch=2-step=294.ckpt') # model.load_state_dict(checkpoint['model_state_dict']) # # Classify the image # prediction = model.predict(image) # predicted_class = np.argmax(prediction) # # Get the top classes # top_classes = prediction.argsort()[-top_classes:][::-1] # # Generate GradCAM images, if requested # if gradcam: # gradcam_images = [] # for layer in range(model.layers.shape[0]): # gradcam_image = gradcam(model, image, layer, gradcam_opacity) # gradcam_images.append(gradcam_image) # # Get the misclassified images, if requested # misclassified_images = [] # for i in range(len(prediction)): # if prediction[i] != y_test[i]: # misclassified_images.append(image[i]) # Placeholder for top classes top_classes = {"dog" : 0.90, "cat": 0.10} # Placeholder for GradCAM images gradcam_images = [] if gradcam: # Generate GradCAM images for the specified layer and number for i in range(gradcam_num): gradcam_images.append(np.random.rand(32, 32, 3)) # Example random image # Placeholder for misclassified images misclassified_images = [] if misclassified_num > 0: # Get misclassified images for i in range(misclassified_num): misclassified_images.append((np.random.rand(32, 32, 3), 'caption')) # Example random image # Return the classification results return top_classes, gradcam_images if gradcam else [], misclassified_images # Gradio Interface input_image = gr.Image(shape=(32, 32), label="Upload Image", info="Upload a CIFAR-10 image to be classified.") gradcam= gr.Checkbox(label="View GradCAM images?", info="Whether to show GradCAM images.") gradcam_layer = gr.Dropdown(["1", "2", "3"], value="2", label="GradCAM Layer", info="The layer from which to generate GradCAM images.") gradcam_num = gr.Slider(label="Number of GradCAM images", minimum=1, maximum=10, step=1, info="The number of GradCAM images to show.") gradcam_opacity = gr.Slider(label="GradCAM opacity", minimum=0.0, maximum=1.0, step=0.01, info="The opacity of the GradCAM images.") misclassified_num = gr.Slider(label="Number of Misclassified images", minimum=0, maximum=10, step=1, info="The number of misclassified images to show.") top_classes = gr.Slider(label="Number of top classes to show", minimum=1, maximum=10, step=1, info="The number of top classes to show.") output_label = gr.Label(num_top_classes=3, label="Top Classes") output_gradcam_gallery = gr.Gallery(object_fit="fit", columns=4, height=280, label="GradCam Galery") output_misclassified_gallery = gr.Gallery(object_fit="fit", columns=4, height=280, label="Misclassified Images") interface = gr.Interface( fn=run_inference, inputs=[ input_image, gradcam, gradcam_layer, gradcam_num, gradcam_opacity, misclassified_num, top_classes ], outputs=[output_label, output_gradcam_gallery, output_misclassified_gallery], examples=[ ['assets/0001.jpg', True,"3", 4, 0.5, 3, 3, 2], ['assets/0002.jpg', False, "2", 1, 0.3, 1, 2, 2], ['assets/0003.jpg', True, "2", 1, 0.3, 1, 2, 2], ], title="Cifar-10 Inference with GradCAM", description="This is a CIFAR-10 image classifier using custom resnet. Upload a CIFAR-10 image and it will be classified into one of 10 categories.",) interface.launch(share=False)