|
|
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_capturable_doc, |
|
_default_to_fused_or_foreach, |
|
_differentiable_doc, |
|
_disable_dynamo_if_unsupported, |
|
_foreach_doc, |
|
_get_capturable_supported_devices, |
|
_get_scalar_dtype, |
|
_get_value, |
|
_maximize_doc, |
|
_params_doc, |
|
_use_grad_for_differentiable, |
|
_view_as_real, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["Adamax", "adamax"] |
|
|
|
|
|
class Adamax(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 2e-3, |
|
betas: tuple[float, float] = (0.9, 0.999), |
|
eps: float = 1e-8, |
|
weight_decay: float = 0, |
|
foreach: Optional[bool] = None, |
|
*, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
capturable: bool = False, |
|
): |
|
if isinstance(lr, Tensor) and lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 <= eps: |
|
raise ValueError(f"Invalid epsilon value: {eps}") |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
foreach=foreach, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
capturable=capturable, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("foreach", None) |
|
group.setdefault("maximize", False) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("capturable", False) |
|
for p in group["params"]: |
|
p_state = self.state.get(p, []) |
|
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): |
|
step_val = float(p_state["step"]) |
|
p_state["step"] = ( |
|
torch.tensor( |
|
step_val, dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
if group["capturable"] |
|
else torch.tensor(step_val, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
def _init_group( |
|
self, group, params_with_grad, grads, exp_avgs, exp_infs, state_steps |
|
): |
|
has_complex = False |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
has_complex |= torch.is_complex(p) |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError("Adamax does not support sparse gradients") |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = ( |
|
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) |
|
if group["capturable"] |
|
else torch.tensor(0.0, dtype=_get_scalar_dtype()) |
|
) |
|
state["exp_avg"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
state["exp_inf"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
exp_avgs.append(state["exp_avg"]) |
|
exp_infs.append(state["exp_inf"]) |
|
state_steps.append(state["step"]) |
|
|
|
return has_complex |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
exp_avgs: list[Tensor] = [] |
|
exp_infs: list[Tensor] = [] |
|
state_steps: list[Tensor] = [] |
|
|
|
beta1, beta2 = group["betas"] |
|
eps = group["eps"] |
|
lr = group["lr"] |
|
weight_decay = group["weight_decay"] |
|
foreach = group["foreach"] |
|
maximize = group["maximize"] |
|
differentiable = group["differentiable"] |
|
capturable = group["capturable"] |
|
|
|
has_complex = self._init_group( |
|
group, params_with_grad, grads, exp_avgs, exp_infs, state_steps |
|
) |
|
|
|
adamax( |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_infs, |
|
state_steps, |
|
eps=eps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
foreach=foreach, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
capturable=capturable, |
|
has_complex=has_complex, |
|
) |
|
|
|
return loss |
|
|
|
|
|
Adamax.__doc__ = ( |
|
r"""Implements Adamax algorithm (a variant of Adam based on infinity norm). |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 |
|
\text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}, |
|
\: \lambda \text{ (weight decay)}, \\ |
|
&\hspace{13mm} \epsilon \text{ (epsilon)} \\ |
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, |
|
u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}if \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ |
|
&\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\ |
|
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. |
|
""" |
|
+ rf""" |
|
Args: |
|
{_params_doc} |
|
lr (float, Tensor, optional): learning rate (default: 2e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
{_foreach_doc} |
|
{_maximize_doc} |
|
{_differentiable_doc} |
|
{_capturable_doc} |
|
|
|
.. _Adam\: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
|
|
""" |
|
) |
|
|
|
|
|
def _single_tensor_adamax( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_infs: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
eps: float, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
maximize: bool, |
|
differentiable: bool, |
|
capturable: bool, |
|
has_complex: bool, |
|
): |
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
grad = grad if not maximize else -grad |
|
exp_avg = exp_avgs[i] |
|
exp_inf = exp_infs[i] |
|
step_t = state_steps[i] |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert ( |
|
param.device.type == step_t.device.type |
|
and param.device.type in capturable_supported_devices |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
|
|
step_t += 1 |
|
|
|
if weight_decay != 0: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
if torch.is_complex(param): |
|
param = torch.view_as_real(param) |
|
grad = torch.view_as_real(grad) |
|
exp_avg = torch.view_as_real(exp_avg) |
|
exp_inf = torch.view_as_real(exp_inf) |
|
|
|
|
|
exp_avg.lerp_(grad, 1 - beta1) |
|
|
|
if not differentiable: |
|
torch.maximum( |
|
exp_inf.mul_(beta2), |
|
grad.abs().add_(eps), |
|
out=exp_inf, |
|
) |
|
else: |
|
norm_buf = torch.cat( |
|
[exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], |
|
0, |
|
) |
|
exp_inf.copy_(torch.amax(norm_buf, 0, keepdim=False)) |
|
|
|
if capturable: |
|
|
|
|
|
neg_bias_correction = beta1**step_t - 1 |
|
neg_bias_correction.div_(lr) |
|
denom = exp_inf * neg_bias_correction |
|
param.addcdiv_(exp_avg, denom) |
|
else: |
|
bias_correction = 1 - beta1 ** _get_value(step_t) |
|
clr = lr / bias_correction |
|
|
|
param.addcdiv_(exp_avg, exp_inf, value=-clr) |
|
|
|
|
|
def _multi_tensor_adamax( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_infs: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
eps: float, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
maximize: bool, |
|
differentiable: bool, |
|
capturable: bool, |
|
has_complex: bool, |
|
): |
|
assert not differentiable, "_foreach ops don't support autograd" |
|
|
|
if len(params) == 0: |
|
return |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices( |
|
supports_xla=False |
|
) |
|
assert all( |
|
p.device.type == step.device.type |
|
and p.device.type in capturable_supported_devices |
|
for p, step in zip(params, state_steps) |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, exp_avgs, exp_infs, state_steps] |
|
) |
|
for ( |
|
grouped_params_, |
|
grouped_grads_, |
|
grouped_exp_avgs_, |
|
grouped_exp_infs_, |
|
grouped_state_steps_, |
|
), _ in grouped_tensors.values(): |
|
grouped_params = cast(list[Tensor], grouped_params_) |
|
grouped_grads = cast(list[Tensor], grouped_grads_) |
|
grouped_exp_avgs = cast(list[Tensor], grouped_exp_avgs_) |
|
grouped_exp_infs = cast(list[Tensor], grouped_exp_infs_) |
|
grouped_state_steps = cast(list[Tensor], grouped_state_steps_) |
|
|
|
if has_complex: |
|
_view_as_real( |
|
grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_infs |
|
) |
|
|
|
if maximize: |
|
grouped_grads = torch._foreach_neg(grouped_grads) |
|
|
|
|
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu: |
|
torch._foreach_add_( |
|
grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
|
) |
|
else: |
|
torch._foreach_add_(grouped_state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
if maximize: |
|
|
|
torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) |
|
else: |
|
grouped_grads = torch._foreach_add( |
|
grouped_grads, grouped_params, alpha=weight_decay |
|
) |
|
|
|
|
|
torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1) |
|
|
|
|
|
torch._foreach_mul_(grouped_exp_infs, beta2) |
|
|
|
|
|
|
|
if not maximize and weight_decay == 0: |
|
grouped_grads = torch._foreach_abs(grouped_grads) |
|
else: |
|
torch._foreach_abs_(grouped_grads) |
|
|
|
torch._foreach_add_(grouped_grads, eps) |
|
torch._foreach_maximum_(grouped_exp_infs, grouped_grads) |
|
|
|
bias_corrections: Union[tuple[Tensor, ...], list[Tensor]] |
|
if capturable: |
|
bias_corrections = torch._foreach_pow(beta1, grouped_state_steps) |
|
|
|
torch._foreach_sub_(bias_corrections, 1) |
|
torch._foreach_div_(bias_corrections, lr) |
|
|
|
denom = torch._foreach_mul(grouped_exp_infs, bias_corrections) |
|
torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, denom) |
|
else: |
|
bias_corrections = [ |
|
1 - beta1 ** _get_value(step) for step in grouped_state_steps |
|
] |
|
step_size = [(_get_value(lr) / bc) * -1 for bc in bias_corrections] |
|
torch._foreach_addcdiv_( |
|
grouped_params, grouped_exp_avgs, grouped_exp_infs, step_size |
|
) |
|
|
|
|
|
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adamax) |
|
def adamax( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_infs: list[Tensor], |
|
state_steps: list[Tensor], |
|
|
|
|
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
capturable: bool = False, |
|
has_complex: bool = False, |
|
*, |
|
eps: float, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
): |
|
r"""Functional API that performs adamax algorithm computation. |
|
|
|
See :class:`~torch.optim.Adamax` for details. |
|
""" |
|
|
|
if not torch.compiler.is_compiling() and not all( |
|
isinstance(t, torch.Tensor) for t in state_steps |
|
): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if foreach is None: |
|
_, foreach = _default_to_fused_or_foreach( |
|
params, differentiable, use_fused=False |
|
) |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_adamax |
|
else: |
|
func = _single_tensor_adamax |
|
|
|
func( |
|
params, |
|
grads, |
|
exp_avgs, |
|
exp_infs, |
|
state_steps, |
|
eps=eps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
has_complex=has_complex, |
|
capturable=capturable, |
|
) |
|
|