import os import time from datetime import datetime, timezone, timedelta import spaces import torch import torchvision.models as models import numpy as np import gradio as gr from gradio_imageslider import ImageSlider from utils import preprocess_img, preprocess_img_from_path, postprocess_img from vgg19 import VGG_19 from inference import inference if torch.cuda.is_available(): device = 'cuda' elif torch.backends.mps.is_available(): device = 'mps' else: device = 'cpu' print('DEVICE:', device) if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name()) model = VGG_19().to(device).eval() for param in model.parameters(): param.requires_grad = False segmentation_model = models.segmentation.deeplabv3_resnet101( weights='DEFAULT' ).to(device).eval() style_files = os.listdir('./style_images') style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files} lrs = np.logspace(np.log10(0.001), np.log10(0.1), 10).tolist() img_size = 512 cached_style_features = {} for style_name, style_img_path in style_options.items(): style_img = preprocess_img_from_path(style_img_path, img_size)[0].to(device) with torch.no_grad(): style_features = model(style_img) cached_style_features[style_name] = style_features @spaces.GPU(duration=10) def run(content_image, style_name, style_strength=5, apply_to_background=False, progress=gr.Progress(track_tqdm=True)): yield None content_img, original_size = preprocess_img(content_image, img_size) content_img = content_img.to(device) print('-'*15) print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est print('STYLE:', style_name) print('CONTENT IMG SIZE:', original_size) print('STYLE STRENGTH:', style_strength, f'(lr={lrs[style_strength-1]})') style_features = cached_style_features[style_name] st = time.time() generated_img = inference( model=model, segmentation_model=segmentation_model, content_image=content_img, style_features=style_features, lr=lrs[style_strength-1], apply_to_background=apply_to_background ) et = time.time() print('TIME TAKEN:', et-st) yield (content_image, postprocess_img(generated_img, original_size)) def set_slider(value): return gr.update(value=value) css = """ #container { margin: 0 auto; max-width: 1100px; } """ with gr.Blocks(css=css) as demo: gr.HTML("

🖼️ Neural Style Transfer

") with gr.Row(elem_id='container'): with gr.Column(): content_image = gr.Image(label='Content', type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False) style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value') with gr.Group(): style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=10, step=1, value=5, info='Higher values add artistic flair, lower values add a realistic feel.') apply_to_background = gr.Checkbox(label='Apply to background only', info='Note: This experimental feature may not always detect desired backgrounds.') submit_button = gr.Button('Submit', variant='primary') examples = gr.Examples( examples=[ ['./content_images/Bridge.jpg', 'Starry Night'], ['./content_images/GoldenRetriever.jpg', 'Great Wave'], ['./content_images/CameraGirl.jpg', 'Bokeh'] ], inputs=[content_image, style_dropdown] ) with gr.Column(): output_image = ImageSlider(position=0.15, label='Output', show_label=True, type='pil', interactive=False, show_download_button=False) download_button = gr.DownloadButton(label='Download Image', visible=False) def save_image(img_tuple): filename = 'generated.jpg' img_tuple[1].save(filename) return filename submit_button.click( fn=lambda: gr.update(visible=False), outputs=[download_button] ) submit_button.click( fn=run, inputs=[content_image, style_dropdown, style_strength_slider, apply_to_background], outputs=[output_image] ).then( fn=save_image, inputs=[output_image], outputs=[download_button] ).then( fn=lambda: gr.update(visible=True), outputs=[download_button] ) demo.queue = False demo.config['queue'] = False demo.launch(show_api=False)