from tqdm import tqdm import torch import torch.optim as optim import torch.nn.functional as F def _gram_matrix(feature): batch_size, n_feature_maps, height, width = feature.size() new_feature = feature.view(batch_size * n_feature_maps, height * width) return torch.mm(new_feature, new_feature.t()) def _compute_loss(generated_features, content_features, style_features, alpha, beta): content_loss = 0 style_loss = 0 w_l = 1 / len(generated_features) for gf, cf, sf in zip(generated_features, content_features, style_features): content_loss += F.mse_loss(gf, cf) G = _gram_matrix(gf) A = _gram_matrix(sf) style_loss += w_l * F.mse_loss(G, A) return alpha * content_loss + beta * style_loss def inference( *, model, content_image, style_features, lr, iterations=3, optim_caller=optim.LBFGS, alpha=1, beta=1 ): generated_image = content_image.clone().requires_grad_(True) optimizer = optim_caller([generated_image], lr=lr) with torch.no_grad(): content_features = model(content_image) def closure(): optimizer.zero_grad() generated_features = model(generated_image) total_loss = _compute_loss(generated_features, content_features, style_features, alpha, beta) total_loss.backward() return total_loss for _ in tqdm(range(iterations), desc='The magic is happening ✨'): optimizer.step(closure) return generated_image