Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,871 Bytes
00710e8 88b9835 67d69a3 632c209 ad85111 75f2ed4 67d69a3 a84e446 75f2ed4 00710e8 88b9835 67d69a3 caf9141 21eda87 396f6f7 67d69a3 396f6f7 caf9141 75f2ed4 88b9835 67d69a3 f5c8b45 75f2ed4 f5c8b45 75f2ed4 88b9835 75f2ed4 3ef9484 f5c8b45 75f2ed4 88b9835 ff73241 9edbc68 75f2ed4 424869b ab16048 1eb8136 f5c8b45 ab16048 01dd5e7 ab16048 caf9141 f5c8b45 ab16048 424869b caf9141 ab16048 caf9141 ab16048 caf9141 ab16048 de50edd d7dfcb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import os
import time
import datetime
from tqdm import tqdm
import spaces
import torch
import torch.optim as optim
import gradio as gr
from utils import load_img, load_img_from_path, save_img
from vgg19 import VGG_19
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
@spaces.GPU(duration=35)
def inference(content_image, style_image, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('DATETIME:', datetime.datetime.now())
print('STYLE:', style_image)
img_size = 1024 if output_quality else 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength)
print('HIGH QUALITY:', output_quality)
iters = 50
# learning rate determined by input
lr = 0.001 + (0.099 / 99) * (style_strength - 1)
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for iter in tqdm(range(iters), desc='The magic is happening ✨'):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield save_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 550px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Column(elem_id='container'):
content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg')
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=False):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
with gr.Row():
low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
with gr.Group():
output_quality = gr.Checkbox(label='More Realistic', info='Note: This takes longer, but improves output image quality')
submit_button = gr.Button('Submit')
submit_button.click(fn=inference, inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality], outputs=[content_and_output])
examples = gr.Examples(
examples=[
['./content_images/TajMahal.jpg', 'Starry Night', 75, True],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50, True],
['./content_images/SeaTurtle.jpg', 'Mosaic', 100, True]
],
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
)
# disable queue
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=True, allowed_paths=['/tmp/gradio/']) |