import gradio as gr from xsbpe.basic import BasicTokenizer tk = BasicTokenizer() tk.train(open('dune.txt').read(), 256 + 10000, verbose=False) def tokenize(text): tokens = tk.encode(text) colors = ['rgba(107,64,216,.3)', 'rgba(104,222,122,.4)', 'rgba(244,172,54,.4)', 'rgba(239,65,70,.4)', 'rgba(39,181,234,.4)'] colored_tokens = [] for i, token in enumerate(tokens): token = tk.vocab[token].decode('utf-8').replace(' ', ' ') span = f'{token}' colored_tokens.append(span) return '
' + ''.join(colored_tokens) + '
', tokens, len(tokens), len(text) interface = gr.Interface( fn=tokenize, inputs=[gr.TextArea(label='Input Text', type='text')], outputs=[ gr.HTML(label='Tokenized Text'), gr.Textbox(label='Token IDs', lines=1, max_lines=5), gr.Textbox(label='Tokens', max_lines=1), gr.Textbox(label='Characters', max_lines=1) ], title="BPE Tokenization Visualizer", live=True, examples=[ 'BPE, or Byte Pair Encoding, is a method used to compress text by breaking it down into smaller units. In natural language processing, it helps tokenize words by merging the most frequent pairs of characters or symbols, creating more efficient and manageable tokens for analysis.' ], show_progress='hidden', api_name='tokenize', allow_flagging='never' ).launch()