import time import gradio as gr from xsbpe.basic import BasicTokenizer tk = BasicTokenizer() print('Tokenizer initialized.') st = time.time() tk.load('dune-20256.model') et = time.time() print(f'Model loaded. Took {et-st} seconds.') def tokenize(text): tokens = tk.encode(text) colors = ['rgba(107,64,216,.3)', 'rgba(104,222,122,.4)', 'rgba(244,172,54,.4)', 'rgba(239,65,70,.4)', 'rgba(39,181,234,.4)'] colored_tokens = [] for i, token in enumerate(tokens): token = tk.vocab[token].decode('utf-8').replace(' ', ' ') span = f'{token}' colored_tokens.append(span) return '
' + ''.join(colored_tokens) + '
', tokens, len(tokens), len(text) interface = gr.Interface( fn=tokenize, inputs=[gr.TextArea(label='Input Text', type='text')], outputs=[ gr.HTML(label='Tokenized Text'), gr.Textbox(label='Token IDs', lines=1, max_lines=5), gr.Textbox(label='Tokens', max_lines=1), gr.Textbox(label='Characters', max_lines=1) ], title="BPE Tokenization Visualizer", live=True, examples=[ 'BPE, or Byte Pair Encoding, is a method used to compress text by breaking it down into smaller units. In natural language processing, it helps tokenize words by merging the most frequent pairs of characters or symbols, creating more efficient and manageable tokens for analysis.', 'This custom BPE tokenizer model was trained on the entire text of the novel Dune by Frank Herbert and has a vocabulary size of 20,256, which corresponds to the 256 bytes base tokens and the symbols learned with 20,000 merges.' ], show_progress='hidden', api_name='tokenize', allow_flagging='never' ).launch()