import numpy as np import gradio as gr import torch from PIL import Image from model import Model as Model from annotated_directions import annotated_directions device = torch.device('cpu') torch.set_grad_enabled(False) model_name = "stylegan2_ffhq1024" directions = list(annotated_directions[model_name].keys()) def inference(seed, direction): layer = annotated_directions[model_name][direction]['layer'] M = Model(model_name, trunc_psi=1.0, device=device, layer=layer) M.ranks = annotated_directions[model_name][direction]['ranks'] # load the checkpoint try: M.Us = torch.Tensor(np.load(annotated_directions[model_name][direction]['checkpoints_path'][0])).to(device) M.Uc = torch.Tensor(np.load(annotated_directions[model_name][direction]['checkpoints_path'][1])).to(device) except KeyError: raise KeyError('ERROR: No directions specified in ./annotated_directions.py for this model') part, appearance, lam = annotated_directions[model_name][direction]['parameters'] Z, image, image2, part_img = M.edit_at_layer([[part]], [appearance], [lam], t=seed, Uc=M.Uc, Us=M.Us, noise=None) dif = np.tile(((np.mean((image - image2)**2, -1)))[:,:,None], [1,1,3]).astype(np.uint8) return Image.fromarray(np.concatenate([image, image2, dif], 1)) demo = gr.Interface( fn=inference, inputs=[gr.Slider(0, 1000, value=64), gr.Dropdown(directions, value='no_eyebrows')], outputs=[gr.Image(type="pil", label="original | edited | mean-squared difference")], title="PandA (ICLR'23) - FFHQ edit zoo", description="Provides a quick interface to manipulate pre-annotated directions with pre-trained global parts and appearances factors. Note that we use the free CPU tier, so synthesis takes about 10 seconds.", article="Check out the full demo and paper at: https://github.com/james-oldfield/PandA" ) demo.launch()