class Styleformer(): def __init__( self, style=0, ctf_model_tag="jaimin/Informal_to_formal", ftc_model_tag="jaimin/formal_to_informal", atp_model_tag="jaimin/Active_to_passive", pta_model_tag="jaimin/Passive_to_active", adequacy_model_tag="jaimin/parrot_adequacy_model", ): from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM from adequacy import Adequacy self.style = style self.adequacy = adequacy_model_tag and Adequacy(model_tag=adequacy_model_tag, use_auth_token="access") self.model_loaded = False if self.style == 0: self.ctf_tokenizer = AutoTokenizer.from_pretrained(ctf_model_tag, use_auth_token="access") self.ctf_model = AutoModelForSeq2SeqLM.from_pretrained(ctf_model_tag, use_auth_token="access") print("Casual to Formal model loaded...") self.model_loaded = True elif self.style == 1: self.ftc_tokenizer = AutoTokenizer.from_pretrained(ftc_model_tag, use_auth_token="access") self.ftc_model = AutoModelForSeq2SeqLM.from_pretrained(ftc_model_tag, use_auth_token="access") print("Formal to Casual model loaded...") self.model_loaded = True elif self.style == 2: self.atp_tokenizer = AutoTokenizer.from_pretrained(atp_model_tag,use_auth_token="access") self.atp_model = AutoModelForSeq2SeqLM.from_pretrained(atp_model_tag,use_auth_token="access") print("Active to Passive model loaded...") self.model_loaded = True elif self.style == 3: self.pta_tokenizer = AutoTokenizer.from_pretrained(pta_model_tag,use_auth_token="access") self.pta_model = AutoModelForSeq2SeqLM.from_pretrained(pta_model_tag,use_auth_token="access") print("Passive to Active model loaded...") self.model_loaded = True else: print("Only CTF, FTC, ATP and PTA are supported in the pre-release...stay tuned") def transfer(self, input_sentence, inference_on=-1, quality_filter=0.95, max_candidates=5): if self.model_loaded: if inference_on == -1: device = "cpu" elif inference_on >= 0 and inference_on < 999: device = "cpu:" + str(inference_on) else: device = "cpu" print("Onnx + Quantisation is not supported in the pre-release...stay tuned.") if self.style == 0: output_sentence = self._casual_to_formal(input_sentence, device, quality_filter, max_candidates) return output_sentence elif self.style == 1: output_sentence = self._formal_to_casual(input_sentence, device, quality_filter, max_candidates) return output_sentence elif self.style == 2: output_sentence = self._active_to_passive(input_sentence, device) return output_sentence elif self.style == 3: output_sentence = self._passive_to_active(input_sentence, device) return output_sentence else: print("Models aren't loaded for this style, please use the right style during init") def _formal_to_casual(self, input_sentence, device, quality_filter, max_candidates): ftc_prefix = "transfer Formal to Casual: " src_sentence = input_sentence input_sentence = ftc_prefix + input_sentence input_ids = self.ftc_tokenizer.encode(input_sentence, return_tensors='pt') self.ftc_model = self.ftc_model.to(device) input_ids = input_ids.to(device) preds = self.ftc_model.generate( input_ids, do_sample=True, max_length=32, top_k=50, top_p=0.95, early_stopping=True, num_return_sequences=max_candidates) gen_sentences = set() for pred in preds: gen_sentences.add(self.ftc_tokenizer.decode(pred, skip_special_tokens=True).strip()) adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device) ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True) if len(ranked_sentences) > 0: return ranked_sentences[0][0] else: return None def _casual_to_formal(self, input_sentence, device, quality_filter, max_candidates): ctf_prefix = "transfer Casual to Formal: " src_sentence = input_sentence input_sentence = ctf_prefix + input_sentence input_ids = self.ctf_tokenizer.encode(input_sentence, return_tensors='pt') self.ctf_model = self.ctf_model.to(device) input_ids = input_ids.to(device) preds = self.ctf_model.generate( input_ids, do_sample=True, max_length=32, top_k=50, top_p=0.95, early_stopping=True, num_return_sequences=max_candidates) gen_sentences = set() for pred in preds: gen_sentences.add(self.ctf_tokenizer.decode(pred, skip_special_tokens=True).strip()) adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device) ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True) if len(ranked_sentences) > 0: return ranked_sentences[0][0] else: return None def _active_to_passive(self, input_sentence, device): atp_prefix = "transfer Active to Passive: " src_sentence = input_sentence input_sentence = atp_prefix + input_sentence input_ids = self.atp_tokenizer.encode(input_sentence, return_tensors='pt') self.atp_model = self.atp_model.to(device) input_ids = input_ids.to(device) preds = self.atp_model.generate( input_ids, do_sample=True, max_length=32, top_k=50, top_p=0.95, early_stopping=True, num_return_sequences=1) return self.atp_tokenizer.decode(preds[0], skip_special_tokens=True).strip() def _passive_to_active(self, input_sentence, device): pta_prefix = "transfer Passive to Active: " src_sentence = input_sentence input_sentence = pta_prefix + input_sentence input_ids = self.pta_tokenizer.encode(input_sentence, return_tensors='pt') self.pta_model = self.pta_model.to(device) input_ids = input_ids.to(device) preds = self.pta_model.generate( input_ids, do_sample=True, max_length=32, top_k=50, top_p=0.95, early_stopping=True, num_return_sequences=1) return self.pta_tokenizer.decode(preds[0], skip_special_tokens=True).strip()