import spaces from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image import torch import os import gradio as gr import time import math from PIL import Image import numpy as np try: import intel_extension_for_pytorch as ipex except: pass SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) HF_TOKEN = os.environ.get("HF_TOKEN", None) # Device management based on available hardware device = torch.device( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) torch_device = device torch_dtype = torch.float16 if device == "cuda" else torch.float32 print(f"Device: {device}") print(f"Safety Checker: {SAFETY_CHECKER}") print(f"Torch Compile: {TORCH_COMPILE}") # Loading model pipelines if SAFETY_CHECKER == "True": i2i_pipe = AutoPipelineForImage2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) t2i_pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) else: i2i_pipe = AutoPipelineForImage2Image.from_pretrained( "stabilityai/sdxl-turbo", safety_checker=None, torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) t2i_pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", safety_checker=None, torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) # Method for Kiwi model handling @spaces.GPU() def kiwi_process(prompt, seed=123123, width=512, height=512): """ Custom Kiwi method for image generation using advanced AI techniques. """ print(f"Generating Kiwi-style image for prompt: {prompt}") generator = torch.manual_seed(seed) result = t2i_pipe( prompt=prompt, generator=generator, num_inference_steps=25, # Using more steps for finer results guidance_scale=7.5, # More refined guidance width=width, height=height, output_type="pil", ) return result.images[0] # Resize image helper def resize_crop(image, size=512): image = image.convert("RGB") w, h = image.size image = image.resize((size, int(size * (h / w))), Image.BICUBIC) return image # Main prediction method async def predict(init_image, prompt, strength, steps, seed=123123): if init_image is not None: init_image = resize_crop(init_image) generator = torch.manual_seed(seed) results = i2i_pipe( prompt=prompt, image=init_image, generator=generator, num_inference_steps=steps, guidance_scale=0.0, strength=strength, width=512, height=512, output_type="pil", ) else: return kiwi_process(prompt, seed) # Using the Kiwi method for text-to-image # Gradio UI with a custom description for Kiwi css = """ #container{ margin: 0 auto; max-width: 80rem; } #intro{ max-width: 100%; text-align: center; margin: 0 auto; } """ with gr.Blocks(css=css) as demo: init_image_state = gr.State() with gr.Column(elem_id="container"): gr.Markdown( """# Kiwi Image Generator Demo ## Harnessing the Power of Kiwi AI This demo integrates the Kiwi AI model to generate high-quality images using cutting-edge techniques like quantization and pruning. """, elem_id="intro", ) with gr.Row(): prompt = gr.Textbox( placeholder="Insert your prompt for Kiwi here:", scale=5, container=False, ) generate_bt = gr.Button("Generate with Kiwi", scale=1) with gr.Row(): with gr.Column(): image_input = gr.Image( sources=["upload", "webcam", "clipboard"], label="Upload or Capture Image", type="pil", ) with gr.Column(): image = gr.Image(type="filepath") with gr.Accordion("Advanced options", open=False): strength = gr.Slider( label="Strength", value=0.7, minimum=0.0, maximum=1.0, step=0.001, ) steps = gr.Slider( label="Steps", value=25, minimum=1, maximum=50, step=1 ) seed = gr.Slider( randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1, ) inputs = [image_input, prompt, strength, steps, seed] generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) prompt.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) demo.queue() demo.launch()