import gradio as gr import torch import spaces from torchao.quantization import autoquant from diffusers import FluxPipeline pipe = FluxPipeline.from_pretrained( "sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16 ).to("cuda") pipe.transformer.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) pipe.transformer = autoquant( pipe.transformer, error_on_unseen=False ) @spaces.GPU(duration=120) def generate_images(prompt, guidance_scale, num_inference_steps): # # generate image with normal pipeline # image_normal = pipeline_normal( # prompt=prompt, # guidance_scale=guidance_scale, # num_inference_steps=int(num_inference_steps) # ).images[0] # generate image with optimized pipeline image_optimized = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=int(num_inference_steps) ).images[0] return image_optimized # set up Gradio interface demo = gr.Interface( fn=generate_images, inputs=[ gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"), gr.Slider(1.0, 10.0, step=0.5, value=3.5, label="Guidance Scale"), gr.Slider(10, 100, step=1, value=50, label="Number of Inference Steps") ], outputs=[ gr.Image(type="pil", label="Optimized FluxPipeline") ], title="FluxPipeline Comparison", description="Compare images generated by the normal FluxPipeline and the optimized one using torchao and torch.compile()." ) demo.launch()