# Adapted from https://github.com/jik876/hifi-gan under the MIT license. # LICENSE is in incl_licenses directory. from __future__ import absolute_import, division, print_function, unicode_literals import os import argparse import json import torch import librosa from utils import load_checkpoint from meldataset import get_mel_spectrogram from scipy.io.wavfile import write from env import AttrDict from meldataset import MAX_WAV_VALUE from bigvgan import BigVGAN as Generator h = None device = None torch.backends.cudnn.benchmark = False def inference(a, h): generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device) state_dict_g = load_checkpoint(a.checkpoint_file, device) generator.load_state_dict(state_dict_g["generator"]) filelist = os.listdir(a.input_wavs_dir) os.makedirs(a.output_dir, exist_ok=True) generator.eval() generator.remove_weight_norm() with torch.no_grad(): for i, filname in enumerate(filelist): # Load the ground truth audio and resample if necessary wav, sr = librosa.load( os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True ) wav = torch.FloatTensor(wav).to(device) # Compute mel spectrogram from the ground truth audio x = get_mel_spectrogram(wav.unsqueeze(0), generator.h) y_g_hat = generator(x) audio = y_g_hat.squeeze() audio = audio * MAX_WAV_VALUE audio = audio.cpu().numpy().astype("int16") output_file = os.path.join( a.output_dir, os.path.splitext(filname)[0] + "_generated.wav" ) write(output_file, h.sampling_rate, audio) print(output_file) def main(): print("Initializing Inference Process..") parser = argparse.ArgumentParser() parser.add_argument("--input_wavs_dir", default="test_files") parser.add_argument("--output_dir", default="generated_files") parser.add_argument("--checkpoint_file", required=True) parser.add_argument("--use_cuda_kernel", action="store_true", default=False) a = parser.parse_args() config_file = os.path.join(os.path.split(a.checkpoint_file)[0], "config.json") with open(config_file) as f: data = f.read() global h json_config = json.loads(data) h = AttrDict(json_config) torch.manual_seed(h.seed) global device if torch.cuda.is_available(): torch.cuda.manual_seed(h.seed) device = torch.device("cuda") else: device = torch.device("cpu") inference(a, h) if __name__ == "__main__": main()