import numpy as np import open_clip import streamlit as st import torch from app_lib.main import main device = torch.device("cuda" if torch.cuda.is_available() else "cpu") st.set_page_config( layout="wide", initial_sidebar_state=st.session_state.get("sidebar_state", "collapsed"), ) st.session_state.sidebar_state = "collapsed" st.markdown( """ """, unsafe_allow_html=True, ) st.markdown( """ # I Bet You Did Not Mean That Official HF Space for the paper [*I Bet You Did Not Mean That: Testing Semantci Importance via Betting*](https://arxiv.org/pdf/2405.19146), by [Jacopo Teneggi](https://jacopoteneggi.github.io) and [Jeremias Sulam](https://sites.google.com/view/jsulam). --- """, ) def load_clip(): model, _, preprocess = open_clip.create_model_and_transforms( "hf-hub:laion/CLIP-ViT-B-32-laion2B-s34B-b79K" ) tokenizer = open_clip.get_tokenizer("hf-hub:laion/CLIP-ViT-B-32-laion2B-s34B-b79K") def test( image, class_name, concepts, cardinality, model_name, dataset_name="imagenette" ): print("test!") if __name__ == "__main__": main()