import functools from abc import ABC, abstractmethod from collections import deque from typing import Callable, Tuple, Union import numpy as np import torch from jaxtyping import Float from ibydmt.payoff import HSIC, cMMD, xMMD from ibydmt.wealth import get_wealth Array = Union[np.ndarray, torch.Tensor] class Tester(ABC): def __init__(self): pass @abstractmethod def test(self, *args, **kwargs) -> Tuple[bool, int]: pass class SequentialTester(Tester): def __init__(self, config): super().__init__() self.wealth = get_wealth(config.wealth)(config) self.tau_max = config.tau_max class SKIT(SequentialTester): """Global Independence Tester""" def __init__(self, config): super().__init__(config) self.payoff = HSIC(config) def test(self, Y: Float[Array, "N"], Z: Float[Array, "N"]) -> Tuple[bool, int]: D = np.stack([Y, Z], axis=1) for t in range(1, self.tau_max): d = D[2 * t : 2 * (t + 1)] prev_d = D[: 2 * t] null_d = np.stack([d[:, 0], np.flip(d[:, 1])], axis=1) payoff = self.payoff.compute(d, null_d, prev_d) self.wealth.update(payoff) if self.wealth.rejected: return (True, t) return (False, t) class cSKIT(SequentialTester): """Global Conditional Independence Tester""" def __init__(self, config): super().__init__(config) self.payoff = cMMD(config) def _sample( self, z: Float[Array, "N D"], j: int = None, cond_p: Callable[[Float[Array, "N D"], list[int]], Float[Array, "N D"]] = None, ) -> Tuple[Float[Array, "N"], Float[Array, "N"], Float[Array, "N D-1"]]: C = list(set(range(z.shape[1])) - {j}) zj, cond_z = z[:, [j]], z[:, C] samples = cond_p(z, C) null_zj = samples[:, [j]] return zj, null_zj, cond_z def test( self, Y: Float[Array, "N"], Z: Float[Array, "N D"], j: int, cond_p: Callable[[Float[Array, "N D"], list[int]], Float[Array, "N D"]], ) -> Tuple[bool, int]: sample = functools.partial(self._sample, j=j, cond_p=cond_p) prev_y, prev_z = Y[:1][:, None], Z[:1] prev_zj, prev_null_zj, prev_cond_z = sample(prev_z) prev_d = np.concatenate([prev_y, prev_zj, prev_null_zj, prev_cond_z], axis=-1) for t in range(1, self.tau_max): y, z = Y[[t]][:, None], Z[[t]] zj, null_zj, cond_z = sample(z) u = np.concatenate([y, zj, cond_z], axis=-1) null_u = np.concatenate([y, null_zj, cond_z], axis=-1) payoff = self.payoff.compute(u, null_u, prev_d) self.wealth.update(payoff) d = np.concatenate([y, zj, null_zj, cond_z], axis=-1) prev_d = np.vstack([prev_d, d]) if self.wealth.rejected: return (True, t) return (False, t) class xSKIT(SequentialTester): """Local Conditional Independence Tester""" def __init__(self, config): super().__init__(config) self.payoff = xMMD(config) self._queue = deque() def _sample( self, z: Float[Array, "D"], j: int, C: list[int], cond_p: Callable[[Float[Array, "D"], list[int], int], Float[Array, "N D2"]], model: Callable[[Float[Array, "N D2"]], Float[Array, "N"]], ) -> Tuple[Float[Array, "1"], Float[Array, "1"]]: if len(self._queue) == 0: Cuj = C + [j] h = cond_p(z, Cuj, self.tau_max) null_h = cond_p(z, C, self.tau_max) y = model(h)[:, None] null_y = model(null_h)[:, None] self._queue.extend(zip(y, null_y)) return self._queue.pop() def test( self, z: Float[Array, "D"], j: int, C: list[int], cond_p: Callable[[Float[Array, "D"], list[int], int], Float[Array, "N D2"]], model: Callable[[Float[Array, "N D2"]], Float[Array, "N"]], ) -> Tuple[bool, int]: sample = functools.partial(self._sample, z, j, C, cond_p, model) prev_d = np.stack(sample(), axis=1) for t in range(1, self.tau_max): y, null_y = sample() payoff = self.payoff.compute(y, null_y, prev_d) self.wealth.update(payoff) d = np.stack([y, null_y], axis=1) prev_d = np.vstack([prev_d, d]) if self.wealth.rejected: return (True, t) return (False, t)