# -*- coding: utf-8 -*- import numpy as np import torch import torch.nn as nn from einops import rearrange from einops.layers.torch import Rearrange from timm.models.layers import trunc_normal_, DropPath class WMSA(nn.Module): """ Self-attention module in Swin Transformer """ def __init__(self, input_dim, output_dim, head_dim, window_size, type): super(WMSA, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.head_dim = head_dim self.scale = self.head_dim ** -0.5 self.n_heads = input_dim // head_dim self.window_size = window_size self.type = type self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True) self.relative_position_params = nn.Parameter( torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)) self.linear = nn.Linear(self.input_dim, self.output_dim) trunc_normal_(self.relative_position_params, std=.02) self.relative_position_params = torch.nn.Parameter( self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1, 2).transpose( 0, 1)) def generate_mask(self, h, w, p, shift): """ generating the mask of SW-MSA Args: shift: shift parameters in CyclicShift. Returns: attn_mask: should be (1 1 w p p), """ # supporting square. attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device) if self.type == 'W': return attn_mask s = p - shift attn_mask[-1, :, :s, :, s:, :] = True attn_mask[-1, :, s:, :, :s, :] = True attn_mask[:, -1, :, :s, :, s:] = True attn_mask[:, -1, :, s:, :, :s] = True attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)') return attn_mask def forward(self, x): """ Forward pass of Window Multi-head Self-attention module. Args: x: input tensor with shape of [b h w c]; attn_mask: attention mask, fill -inf where the value is True; Returns: output: tensor shape [b h w c] """ if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) h_windows = x.size(1) w_windows = x.size(2) # square validation # assert h_windows == w_windows x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size) qkv = self.embedding_layer(x) q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0) sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale # Adding learnable relative embedding sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q') # Using Attn Mask to distinguish different subwindows. if self.type != 'W': attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2) sim = sim.masked_fill_(attn_mask, float("-inf")) probs = nn.functional.softmax(sim, dim=-1) output = torch.einsum('hbwij,hbwjc->hbwic', probs, v) output = rearrange(output, 'h b w p c -> b w p (h c)') output = self.linear(output) output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2)) return output def relative_embedding(self): cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)])) relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1 # negative is allowed return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()] class Block(nn.Module): def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): """ SwinTransformer Block """ super(Block, self).__init__() self.input_dim = input_dim self.output_dim = output_dim assert type in ['W', 'SW'] self.type = type if input_resolution <= window_size: self.type = 'W' self.ln1 = nn.LayerNorm(input_dim) self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.ln2 = nn.LayerNorm(input_dim) self.mlp = nn.Sequential( nn.Linear(input_dim, 4 * input_dim), nn.GELU(), nn.Linear(4 * input_dim, output_dim), ) def forward(self, x): x = x + self.drop_path(self.msa(self.ln1(x))) x = x + self.drop_path(self.mlp(self.ln2(x))) return x class ConvTransBlock(nn.Module): def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): """ SwinTransformer and Conv Block """ super(ConvTransBlock, self).__init__() self.conv_dim = conv_dim self.trans_dim = trans_dim self.head_dim = head_dim self.window_size = window_size self.drop_path = drop_path self.type = type self.input_resolution = input_resolution assert self.type in ['W', 'SW'] if self.input_resolution <= self.window_size: self.type = 'W' self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, self.type, self.input_resolution) self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) self.conv_block = nn.Sequential( nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False), nn.ReLU(True), nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False) ) def forward(self, x): conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1) conv_x = self.conv_block(conv_x) + conv_x trans_x = Rearrange('b c h w -> b h w c')(trans_x) trans_x = self.trans_block(trans_x) trans_x = Rearrange('b h w c -> b c h w')(trans_x) res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1)) x = x + res return x class SCUNet(nn.Module): # def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256): def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256): super(SCUNet, self).__init__() if config is None: config = [2, 2, 2, 2, 2, 2, 2] self.config = config self.dim = dim self.head_dim = 32 self.window_size = 8 # drop path rate for each layer dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))] self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)] begin = 0 self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], 'W' if not i % 2 else 'SW', input_resolution) for i in range(config[0])] + \ [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)] begin += config[0] self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], 'W' if not i % 2 else 'SW', input_resolution // 2) for i in range(config[1])] + \ [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)] begin += config[1] self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], 'W' if not i % 2 else 'SW', input_resolution // 4) for i in range(config[2])] + \ [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)] begin += config[2] self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin], 'W' if not i % 2 else 'SW', input_resolution // 8) for i in range(config[3])] begin += config[3] self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \ [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], 'W' if not i % 2 else 'SW', input_resolution // 4) for i in range(config[4])] begin += config[4] self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \ [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], 'W' if not i % 2 else 'SW', input_resolution // 2) for i in range(config[5])] begin += config[5] self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \ [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], 'W' if not i % 2 else 'SW', input_resolution) for i in range(config[6])] self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)] self.m_head = nn.Sequential(*self.m_head) self.m_down1 = nn.Sequential(*self.m_down1) self.m_down2 = nn.Sequential(*self.m_down2) self.m_down3 = nn.Sequential(*self.m_down3) self.m_body = nn.Sequential(*self.m_body) self.m_up3 = nn.Sequential(*self.m_up3) self.m_up2 = nn.Sequential(*self.m_up2) self.m_up1 = nn.Sequential(*self.m_up1) self.m_tail = nn.Sequential(*self.m_tail) # self.apply(self._init_weights) def forward(self, x0): h, w = x0.size()[-2:] paddingBottom = int(np.ceil(h / 64) * 64 - h) paddingRight = int(np.ceil(w / 64) * 64 - w) x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0) x1 = self.m_head(x0) x2 = self.m_down1(x1) x3 = self.m_down2(x2) x4 = self.m_down3(x3) x = self.m_body(x4) x = self.m_up3(x + x4) x = self.m_up2(x + x3) x = self.m_up1(x + x2) x = self.m_tail(x + x1) x = x[..., :h, :w] return x def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)