from src.helper import download_hugging_face_embeddings from langchain_pinecone import PineconeVectorStore from langchain.prompts import PromptTemplate from langchain_openai import OpenAI from langchain.chains import RetrievalQA from dotenv import load_dotenv from src.prompt import prompt_template import os load_dotenv() PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY") PINECONE_API_ENV = os.environ.get("PINECONE_API_ENV") embeddings = download_hugging_face_embeddings() index_name = "llm-chatbot" # Initializing the Pinecone docsearch = PineconeVectorStore.from_existing_index(index_name, embeddings) PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chain_type_kwargs = {"prompt": PROMPT} current_dir = os.getcwd() llm = OpenAI() qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=docsearch.as_retriever(search_kwargs={"k": 2}), return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True, ) def openai_call(input): result = qa.invoke({"query": input}) return str(result["result"]) if __name__ == "__main__": msg = "If a previous owner of a land had allowed a neighbour or neighbour to walk or drive over his land in a shortcut and this has been going on for say a decade or so can I as the new owner stop them now from using the shortcut?" print(f"response: {openai_call(msg)}")