from transformers import pipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from peft import PeftModel, PeftConfig import gradio as gr import torch base_model = "unsloth/Llama-3.2-3B-Instruct" # Replace with the correct base model peft_model_path = "ivwhy/lora_model" config = PeftConfig.from_pretrained(peft_model_path) model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.bfloat16) model = PeftModel.from_pretrained(model, peft_model_path) tokenizer = AutoTokenizer.from_pretrained(base_model) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, device=-1, # CPU ) chatbot = pipeline message_list = [] response_list = [] def chat_function(message, history, system_prompt, max_new_tokens, temperature): messages = [{"role":"system","content":system_prompt}, {"role":"user","content":message}] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True,) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")] outputs = pipeline( prompt, max_new_tokens = max_new_tokens, eos_token_id = terminators, do_sample = True, temperature = 0.1, top_p = 0.9,) return outputs[0]["generated_text"][len(prompt):] demo_chatbot = gr.ChatInterface( chat_function, textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7), chatbot=gr.Chatbot(height=400), additional_inputs=[ gr.Textbox("You are helpful AI", label="System Prompt"), gr.Slider(500,4000, label="Max New Tokens"), gr.Slider(0,1,label="Temperature") ]) demo_chatbot.launch() ''' =================================== OLD VERSION ============================================== import torch import transformers import gradio as gr from unsloth import FastLanguageModel # Load the fine-tuned Unsloth model max_seq_length = 2048 # Adjust based on your training dtype = None # Auto-detect is fine for CPU def load_model(): model, tokenizer = FastLanguageModel.from_pretrained( model_name="ivwhy/lora_model", # Your fine-tuned model path max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=True, # Keep 4-bit loading enabled ) # Optional: Add special tokens for chat if needed tokenizer.pad_token = tokenizer.eos_token # Create the pipeline for CPU pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, device=-1 # Force CPU usage ) return pipeline, tokenizer # Load model globally generation_pipeline, tokenizer = load_model() def chat_function(message, history, system_prompt, max_new_tokens, temperature): messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": message} ] # Apply chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) # Define terminators terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] # Generate response outputs = generation_pipeline( prompt, max_new_tokens=max_new_tokens, eos_token_id=terminators, do_sample=True, temperature=temperature, top_p=0.9, ) # Extract and return just the generated text return outputs[0]["generated_text"][len(prompt):] # Create Gradio interface demo = gr.ChatInterface( chat_function, textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7), chatbot=gr.Chatbot(height=400), additional_inputs=[ gr.Textbox("You are helpful AI", label="System Prompt"), gr.Slider(minimum=1, maximum=4000, value=500, label="Max New Tokens"), gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature") ] ) if __name__ == "__main__": demo.launch() ================================== OLD VER ============================== import torch import transformers import gradio as gr from unsloth import FastLanguageModel # Load the fine-tuned Unsloth model max_seq_length = 2048 # Adjust based on your training dtype = None # None for auto detection def load_model(): model, tokenizer = FastLanguageModel.from_pretrained( model_name="ivwhy/lora_model", # Your fine-tuned model path max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=True # Optional: load in 4-bit for efficiency ) # Optional: Add special tokens for chat if needed tokenizer.pad_token = tokenizer.eos_token # Create the pipeline pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1 # Use GPU if available ) return pipeline, tokenizer # Load model globally generation_pipeline, tokenizer = load_model() def chat_function(message, history, system_prompt, max_new_tokens, temperature): messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": message} ] # Apply chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) # Define terminators terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] # Generate response outputs = generation_pipeline( prompt, max_new_tokens=max_new_tokens, eos_token_id=terminators, do_sample=True, temperature=temperature, top_p=0.9, ) # Extract and return just the generated text return outputs[0]["generated_text"][len(prompt):] # Create Gradio interface demo = gr.ChatInterface( chat_function, textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7), chatbot=gr.Chatbot(height=400), additional_inputs=[ gr.Textbox("You are helpful AI", label="System Prompt"), gr.Slider(minimum=1, maximum=4000, value=500, label="Max New Tokens"), gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature") ] ) if __name__ == "__main__": demo.launch() '''