# https://huggingface.co/spaces/itsmariamaraki/AAI-Assessment3 # Here are the imports import gradio as gr import PyPDF2 from PyPDF2 import PdfReader from pdfminer.high_level import extract_pages, extract_text from transformers import pipeline, AutoProcessor, AutoModel, AutoTokenizer import torch import soundfile as sf from IPython.display import Audio from datasets import load_dataset from io import BytesIO import os # Here is the code def abstract(pdf_file): pdf_bytes = BytesIO(pdf_file) pdf_reader = PyPDF2.PdfReader(pdf_bytes) abstract = '' for page_number in range(len(pdf_reader.pages)): text = pdf_reader.pages[page_number].extract_text() if 'abstract' in text.lower(): #in order to read only the abstract, i set as a start the abstract point & as an end the introduction point start_index = text.lower().find('abstract') end_index = text.lower().find('introduction') abstract = text[start_index:end_index] break return abstract summarization = pipeline('summarization', model = 'pszemraj/long-t5-tglobal-base-16384-book-summary') #best summarization model i tested regarding this assessment audiospeech = pipeline('text-to-speech', model = 'suno/bark-small') #the voice is a bit distorted but gives a good output & takes less time def summarization_n_audiospeech(pdf_file): abstract_text = abstract(pdf_file) summary = summarization(abstract_text, max_length=50, min_length=10)[0]['summary_text'] #didn't know exactly what would give one sentence, so i checked multiple times the min & max lengths regarding the 11th article. for a dif article, those parameters would probably have to be different as well #converting the summarization into an audio output tts_output = audiospeech(summary) audio_data = tts_output['audio'][0] with BytesIO() as buffer: sf.write(buffer, audio_data, 16000, format = 'wav') audio_bytes = buffer.getvalue() return summary, audio_bytes iface = gr.Interface( fn = summarization_n_audiospeech, inputs = gr.File(label='upload PDF', type='binary'), #if i didn't set a type, the gradio output was an error - searched it online for the solution outputs = [ gr.Textbox(label='Summarization of the Abstract:'), gr.Audio(label="Audio Speech of the Abstract's Summary:") ], title = "PDF's Abstract Summarization & Audio Speech Processor", description = "App that generates a one-line summary of the abstract & a speech audio of this summarization -- requirements: app only accepts PDFs which include an ABSTRACT section", examples = [os.path.join(os.path.dirname(__file__), 'Hidden_Technical_Debt.pdf'), os.path.join(os.path.dirname(__file__), 'BloombergGPT.pdf'), os.path.join(os.path.dirname(__file__), 'Efficient_Estimation_of_Word_Representations.pdf') ], cache_examples = True ) iface.launch()