import streamlit as st
import yfinance as yf
import plotly.graph_objs as go
from plotly.subplots import make_subplots
from crew_groq import crew_creator
from dotenv import load_dotenv
load_dotenv()
st.set_page_config(layout="wide", page_title="Finance Agent", initial_sidebar_state="expanded")
st.sidebar.markdown('
AI-Agents Finance Analyst Platform
Welcome to my cutting-edge stock analysis platform, leveraging Artificial Intelligence and Large Language Models (LLMs) to deliver professional-grade investment insights. Our system offers:
- Comprehensive Data Analysis on stocks, and investing.
- In-depth fundamental and technical analyses
- Extensive web and news research integration
- Customizable analysis parameters including time frames and specific indicators
Users can obtain a detailed, AI-generated analysis report by simply selecting a stock symbol, specifying a time period, and choosing desired analysis indicators. This platform aims to empower investors with data-driven, AI-enhanced decision-making tools for the complex world of stock market investments.
Please note, this analysis is for informational purposes only and should not be construed as financial or investment advice.
----------------------------------------------------------------------------------------------------------------------------
""", unsafe_allow_html=True)
# Model selection
# model_option = st.sidebar.selectbox("Select LLM Model", ['Llama 3 8B', 'Llama 3.1 70B', 'Llama 3.1 8B'])
# groq_api_key = st.sidebar.text_input("Enter Groq API Key", type="password")
stock_symbol = st.sidebar.text_input("Enter Stock Symbol", value="AAPL")
time_period = st.sidebar.selectbox("Select Time Period", ['1mo', '3mo', '6mo', '1y', '2y', '5y', 'max'])
indicators = st.sidebar.multiselect("Select Indicators", ['Moving Averages', 'Volume', 'RSI', 'MACD'])
analyze_button = st.sidebar.button("📊 Analyze Stock", help="Click to start the stock analysis")
# Initialize session state
if 'analyzed' not in st.session_state:
st.session_state.analyzed = False
st.session_state.stock_info = None
st.session_state.stock_data = None
st.session_state.result_file_path = None
def get_stock_data(stock_symbol, period='1y'):
return yf.download(stock_symbol, period=period)
def plot_stock_chart(stock_data, indicators):
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=[0.6, 0.2, 0.2])
# Main price chart
fig.add_trace(go.Candlestick(x=stock_data.index,
open=stock_data['Open'],
high=stock_data['High'],
low=stock_data['Low'],
close=stock_data['Close'],
name='Price'),
row=1, col=1)
# Add selected indicators
if 'Moving Averages' in indicators:
fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=50).mean(), name='50 MA', line=dict(color='orange')), row=1, col=1)
fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=200).mean(), name='200 MA', line=dict(color='red')), row=1, col=1)
if 'Volume' in indicators:
fig.add_trace(go.Bar(x=stock_data.index, y=stock_data['Volume'], name='Volume'), row=2, col=1)
if 'RSI' in indicators:
delta = stock_data['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
fig.add_trace(go.Scatter(x=stock_data.index, y=rsi, name='RSI'), row=3, col=1)
if 'MACD' in indicators:
ema12 = stock_data['Close'].ewm(span=12, adjust=False).mean()
ema26 = stock_data['Close'].ewm(span=26, adjust=False).mean()
macd = ema12 - ema26
signal = macd.ewm(span=9, adjust=False).mean()
fig.add_trace(go.Scatter(x=stock_data.index, y=macd, name='MACD'), row=3, col=1)
fig.add_trace(go.Scatter(x=stock_data.index, y=signal, name='Signal'), row=3, col=1)
fig.update_layout(
title='Stock Analysis',
yaxis_title='Price',
xaxis_rangeslider_visible=False,
height=800,
showlegend=True
)
fig.update_xaxes(
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
),
rangeslider=dict(visible=False),
type="date"
)
return fig
if analyze_button:
st.session_state.analyzed = False # Reset analyzed state
st.snow()
# Fetch stock info and data
with st.spinner(f"Fetching data for {stock_symbol}..."):
stock = yf.Ticker(stock_symbol)
st.session_state.stock_info = stock.info
st.session_state.stock_data = get_stock_data(stock_symbol, period=time_period)
# Create and run the crew
with st.spinner("Running analysis, please wait..."):
st.session_state.result_file_path = crew_creator(stock_symbol,
# model_option, groq_api_key
)
st.session_state.analyzed = True
# Display stock info if available
if st.session_state.stock_info:
st.markdown('