|
import gradio as gr |
|
import torch |
|
from torchvision import transforms |
|
from PIL import Image |
|
import requests |
|
|
|
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() |
|
|
|
|
|
response = requests.get("https://git.io/JJkYN") |
|
labels = response.text.split("\n") |
|
|
|
def predict(inp): |
|
inp = transforms.ToTensor()(inp).unsqueeze(0) |
|
with torch.no_grad(): |
|
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) |
|
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} |
|
return confidences |
|
|
|
gr.Interface(fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Label(num_top_classes=3), |
|
examples=["imgs/lion.jpg", |
|
"imgs/car.jpg", |
|
"imgs/cheetah.jpg", |
|
"imgs/banana.jpg", |
|
"imgs/bus.jpg", |
|
"imgs/parfum.jpg", |
|
"imgs/alligator.jpg", |
|
"imgs/arc.jpg"]).launch() |
|
|