from tqdm import trange import torch from torch.utils.data import DataLoader from logger import Logger from modules.model import GeneratorFullModel, DiscriminatorFullModel from torch.optim.lr_scheduler import MultiStepLR from sync_batchnorm import DataParallelWithCallback from frames_dataset import DatasetRepeater def train(config, generator, discriminator, kp_detector, checkpoint, log_dir, dataset, device_ids): train_params = config['train_params'] optimizer_generator = torch.optim.Adam(generator.parameters(), lr=train_params['lr_generator'], betas=(0.5, 0.999)) optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=train_params['lr_discriminator'], betas=(0.5, 0.999)) optimizer_kp_detector = torch.optim.Adam(kp_detector.parameters(), lr=train_params['lr_kp_detector'], betas=(0.5, 0.999)) if checkpoint is not None: start_epoch = Logger.load_cpk(checkpoint, generator, discriminator, kp_detector, optimizer_generator, optimizer_discriminator, None if train_params['lr_kp_detector'] == 0 else optimizer_kp_detector) else: start_epoch = 0 scheduler_generator = MultiStepLR(optimizer_generator, train_params['epoch_milestones'], gamma=0.1, last_epoch=start_epoch - 1) scheduler_discriminator = MultiStepLR(optimizer_discriminator, train_params['epoch_milestones'], gamma=0.1, last_epoch=start_epoch - 1) scheduler_kp_detector = MultiStepLR(optimizer_kp_detector, train_params['epoch_milestones'], gamma=0.1, last_epoch=-1 + start_epoch * (train_params['lr_kp_detector'] != 0)) if 'num_repeats' in train_params or train_params['num_repeats'] != 1: dataset = DatasetRepeater(dataset, train_params['num_repeats']) dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=True, num_workers=6, drop_last=True) generator_full = GeneratorFullModel(kp_detector, generator, discriminator, train_params) discriminator_full = DiscriminatorFullModel(kp_detector, generator, discriminator, train_params) if torch.cuda.is_available(): generator_full = DataParallelWithCallback(generator_full, device_ids=device_ids) discriminator_full = DataParallelWithCallback(discriminator_full, device_ids=device_ids) with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'], checkpoint_freq=train_params['checkpoint_freq']) as logger: for epoch in trange(start_epoch, train_params['num_epochs']): for x in dataloader: losses_generator, generated = generator_full(x) loss_values = [val.mean() for val in losses_generator.values()] loss = sum(loss_values) loss.backward() optimizer_generator.step() optimizer_generator.zero_grad() optimizer_kp_detector.step() optimizer_kp_detector.zero_grad() if train_params['loss_weights']['generator_gan'] != 0: optimizer_discriminator.zero_grad() losses_discriminator = discriminator_full(x, generated) loss_values = [val.mean() for val in losses_discriminator.values()] loss = sum(loss_values) loss.backward() optimizer_discriminator.step() optimizer_discriminator.zero_grad() else: losses_discriminator = {} losses_generator.update(losses_discriminator) losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses_generator.items()} logger.log_iter(losses=losses) scheduler_generator.step() scheduler_discriminator.step() scheduler_kp_detector.step() logger.log_epoch(epoch, {'generator': generator, 'discriminator': discriminator, 'kp_detector': kp_detector, 'optimizer_generator': optimizer_generator, 'optimizer_discriminator': optimizer_discriminator, 'optimizer_kp_detector': optimizer_kp_detector}, inp=x, out=generated)