from torch import nn import torch.nn.functional as F from modules.util import kp2gaussian import torch class DownBlock2d(nn.Module): """ Simple block for processing video (encoder). """ def __init__(self, in_features, out_features, norm=False, kernel_size=4, pool=False, sn=False): super(DownBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size) if sn: self.conv = nn.utils.spectral_norm(self.conv) if norm: self.norm = nn.InstanceNorm2d(out_features, affine=True) else: self.norm = None self.pool = pool def forward(self, x): out = x out = self.conv(out) if self.norm: out = self.norm(out) out = F.leaky_relu(out, 0.2) if self.pool: out = F.avg_pool2d(out, (2, 2)) return out class Discriminator(nn.Module): """ Discriminator similar to Pix2Pix """ def __init__(self, num_channels=3, block_expansion=64, num_blocks=4, max_features=512, sn=False, use_kp=False, num_kp=10, kp_variance=0.01, **kwargs): super(Discriminator, self).__init__() down_blocks = [] for i in range(num_blocks): down_blocks.append( DownBlock2d(num_channels + num_kp * use_kp if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), norm=(i != 0), kernel_size=4, pool=(i != num_blocks - 1), sn=sn)) self.down_blocks = nn.ModuleList(down_blocks) self.conv = nn.Conv2d(self.down_blocks[-1].conv.out_channels, out_channels=1, kernel_size=1) if sn: self.conv = nn.utils.spectral_norm(self.conv) self.use_kp = use_kp self.kp_variance = kp_variance def forward(self, x, kp=None): feature_maps = [] out = x if self.use_kp: heatmap = kp2gaussian(kp, x.shape[2:], self.kp_variance) out = torch.cat([out, heatmap], dim=1) for down_block in self.down_blocks: feature_maps.append(down_block(out)) out = feature_maps[-1] prediction_map = self.conv(out) return feature_maps, prediction_map class MultiScaleDiscriminator(nn.Module): """ Multi-scale (scale) discriminator """ def __init__(self, scales=(), **kwargs): super(MultiScaleDiscriminator, self).__init__() self.scales = scales discs = {} for scale in scales: discs[str(scale).replace('.', '-')] = Discriminator(**kwargs) self.discs = nn.ModuleDict(discs) def forward(self, x, kp=None): out_dict = {} for scale, disc in self.discs.items(): scale = str(scale).replace('-', '.') key = 'prediction_' + scale feature_maps, prediction_map = disc(x[key], kp) out_dict['feature_maps_' + scale] = feature_maps out_dict['prediction_map_' + scale] = prediction_map return out_dict