from typing import List from dataclasses import asdict import pandas as pd import gradio as gr from DDICourseSearch import DDICourseSearch, CourseSearchResult # Load the courses df = pd.read_csv('./data/courses.csv') df.head() # data cleaning df = df.replace({r'\s+$': '', r'^\s+': ''}, regex=True).replace(r'\n', ' ', regex=True) df = df.drop(df.columns[[4]], axis=1) search_engine = DDICourseSearch( courses_df = df ) def convert_to_dataframe(course_list: List[CourseSearchResult]) -> pd.DataFrame: # Convert each CourseSearchResult object to a dictionary and then to a DataFrame return pd.DataFrame([asdict(course) for course in course_list]) # Function to search for products def search_courses(query, k, search_type, rerank=True): if not query.strip(): return df # Return all products if the query is empty results = search_engine.search(query, k=k, search_type=search_type, rerank=rerank) return convert_to_dataframe(results) # Gradio interface def search_interface(query): results = search_courses(query, k=5) return results with gr.Blocks() as demo: with gr.Row(): query = gr.Textbox(label="Search Query", placeholder="write a query to find the courses") with gr.Row(): search_type = gr.Dropdown(label="Search Type", choices=['semantic', 'keyword', 'hybrid'], value='hybrid') k = gr.Number(label="Items Count", value=10) rerank = gr.Checkbox(value=True, label="Rerank") results = gr.Dataframe(label="Search Results") search_button = gr.Button("Search", variant='primary') search_button.click(fn=search_courses, inputs=[query, k, search_type, rerank], outputs=results) demo.launch()