import torch import torch.nn as nn from .lseg_vit import ( _make_pretrained_clip_vitl16_384, _make_pretrained_clip_vitb32_384, _make_pretrained_clipRN50x16_vitl16_384, forward_vit, ) def _make_encoder( backbone, features, use_pretrained=True, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore", enable_attention_hooks=False, ): if backbone == "clip_vitl16_384": clip_pretrained, pretrained = _make_pretrained_clip_vitl16_384( use_pretrained, hooks=hooks, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) scratch = _make_scratch( [256, 512, 1024, 1024], features, groups=groups, expand=expand ) elif backbone == "clipRN50x16_vitl16_384": clip_pretrained, pretrained = _make_pretrained_clipRN50x16_vitl16_384( use_pretrained, hooks=hooks, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) scratch = _make_scratch( [256, 512, 1024, 1024], features, groups=groups, expand=expand ) elif backbone == "clip_vitb32_384": clip_pretrained, pretrained = _make_pretrained_clip_vitb32_384( use_pretrained, hooks=hooks, use_readout=use_readout, ) scratch = _make_scratch( [96, 192, 384, 768], features, groups=groups, expand=expand ) else: print(f"Backbone '{backbone}' not implemented") assert False return clip_pretrained, pretrained, scratch def _make_scratch(in_shape, out_shape, groups=1, expand=False): scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape out_shape4 = out_shape if expand == True: out_shape1 = out_shape out_shape2 = out_shape * 2 out_shape3 = out_shape * 4 out_shape4 = out_shape * 8 scratch.layer1_rn = nn.Conv2d( in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer2_rn = nn.Conv2d( in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer3_rn = nn.Conv2d( in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer4_rn = nn.Conv2d( in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) return scratch class Interpolate(nn.Module): """Interpolation module.""" def __init__(self, scale_factor, mode, align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp( x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners, ) return x class ResidualConvUnit(nn.Module): """Residual convolution module.""" def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x class FeatureFusionBlock(nn.Module): """Feature fusion block.""" def __init__(self, features): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.resConfUnit1 = ResidualConvUnit(features) self.resConfUnit2 = ResidualConvUnit(features) def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: output += self.resConfUnit1(xs[1]) output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=True ) return output class ResidualConvUnit_custom(nn.Module): """Residual convolution module.""" def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups = 1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=not self.bn, groups=self.groups, ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=not self.bn, groups=self.groups, ) if self.bn == True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn == True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn == True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) # return out + x class FeatureFusionBlock_custom(nn.Module): """Feature fusion block.""" def __init__( self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, ): """Init. Args: features (int): number of features """ super(FeatureFusionBlock_custom, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups = 1 self.expand = expand out_features = features if self.expand == True: out_features = features // 2 self.out_conv = nn.Conv2d( features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1, ) self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) # output += res output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output