import os os.system("pip install git+https://github.com/zhanghang1989/PyTorch-Encoding/") os.system("pip install git+https://github.com/openai/CLIP.git") import torch import argparse import numpy as np from tqdm import tqdm from collections import OrderedDict import torch.nn.functional as F from torch.utils import data import torchvision.transforms as transform from torch.nn.parallel.scatter_gather import gather from additional_utils.models import LSeg_MultiEvalModule from modules.lseg_module import LSegModule import cv2 import math import types import functools import torchvision.transforms as torch_transforms import copy import itertools from PIL import Image import matplotlib.pyplot as plt import clip from encoding.models.sseg import BaseNet import matplotlib as mpl import matplotlib.colors as mplc import matplotlib.figure as mplfigure import matplotlib.patches as mpatches from matplotlib.backends.backend_agg import FigureCanvasAgg from data import get_dataset import torchvision.transforms as transforms import gradio as gr model_name = "convnext_xlarge_in22k" device = 'cuda' if torch.cuda.is_available() else 'cpu' def get_new_pallete(num_cls): n = num_cls pallete = [0]*(n*3) for j in range(0,n): lab = j pallete[j*3+0] = 0 pallete[j*3+1] = 0 pallete[j*3+2] = 0 i = 0 while (lab > 0): pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i)) pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i)) pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i)) i = i + 1 lab >>= 3 return pallete def get_new_mask_pallete(npimg, new_palette, out_label_flag=False, labels=None): """Get image color pallete for visualizing masks""" # put colormap out_img = Image.fromarray(npimg.squeeze().astype('uint8')) out_img.putpalette(new_palette) if out_label_flag: assert labels is not None u_index = np.unique(npimg) patches = [] for i, index in enumerate(u_index): label = labels[index] cur_color = [new_palette[index * 3] / 255.0, new_palette[index * 3 + 1] / 255.0, new_palette[index * 3 + 2] / 255.0] red_patch = mpatches.Patch(color=cur_color, label=label) patches.append(red_patch) return out_img, patches @st.cache(allow_output_mutation=True) def load_model(): class Options: def __init__(self): parser = argparse.ArgumentParser(description="PyTorch Segmentation") # model and dataset parser.add_argument( "--model", type=str, default="encnet", help="model name (default: encnet)" ) parser.add_argument( "--backbone", type=str, default="clip_vitl16_384", help="backbone name (default: resnet50)", ) parser.add_argument( "--dataset", type=str, default="ade20k", help="dataset name (default: pascal12)", ) parser.add_argument( "--workers", type=int, default=16, metavar="N", help="dataloader threads" ) parser.add_argument( "--base-size", type=int, default=520, help="base image size" ) parser.add_argument( "--crop-size", type=int, default=480, help="crop image size" ) parser.add_argument( "--train-split", type=str, default="train", help="dataset train split (default: train)", ) parser.add_argument( "--aux", action="store_true", default=False, help="Auxilary Loss" ) parser.add_argument( "--se-loss", action="store_true", default=False, help="Semantic Encoding Loss SE-loss", ) parser.add_argument( "--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)" ) parser.add_argument( "--batch-size", type=int, default=16, metavar="N", help="input batch size for \ training (default: auto)", ) parser.add_argument( "--test-batch-size", type=int, default=16, metavar="N", help="input batch size for \ testing (default: same as batch size)", ) # cuda, seed and logging parser.add_argument( "--no-cuda", action="store_true", default=False, help="disables CUDA training", ) parser.add_argument( "--seed", type=int, default=1, metavar="S", help="random seed (default: 1)" ) # checking point parser.add_argument( "--weights", type=str, default='', help="checkpoint to test" ) # evaluation option parser.add_argument( "--eval", action="store_true", default=False, help="evaluating mIoU" ) parser.add_argument( "--export", type=str, default=None, help="put the path to resuming file if needed", ) parser.add_argument( "--acc-bn", action="store_true", default=False, help="Re-accumulate BN statistics", ) parser.add_argument( "--test-val", action="store_true", default=False, help="generate masks on val set", ) parser.add_argument( "--no-val", action="store_true", default=False, help="skip validation during training", ) parser.add_argument( "--module", default='lseg', help="select model definition", ) # test option parser.add_argument( "--data-path", type=str, default='../datasets/', help="path to test image folder" ) parser.add_argument( "--no-scaleinv", dest="scale_inv", default=True, action="store_false", help="turn off scaleinv layers", ) parser.add_argument( "--widehead", default=False, action="store_true", help="wider output head" ) parser.add_argument( "--widehead_hr", default=False, action="store_true", help="wider output head", ) parser.add_argument( "--ignore_index", type=int, default=-1, help="numeric value of ignore label in gt", ) parser.add_argument( "--label_src", type=str, default="default", help="how to get the labels", ) parser.add_argument( "--arch_option", type=int, default=0, help="which kind of architecture to be used", ) parser.add_argument( "--block_depth", type=int, default=0, help="how many blocks should be used", ) parser.add_argument( "--activation", choices=['lrelu', 'tanh'], default="lrelu", help="use which activation to activate the block", ) self.parser = parser def parse(self): args = self.parser.parse_args(args=[]) args.cuda = not args.no_cuda and torch.cuda.is_available() print(args) return args args = Options().parse() torch.manual_seed(args.seed) args.test_batch_size = 1 alpha=0.5 args.scale_inv = False args.widehead = True args.dataset = 'ade20k' args.backbone = 'clip_vitl16_384' args.weights = 'checkpoints/demo_e200.ckpt' args.ignore_index = 255 module = LSegModule.load_from_checkpoint( checkpoint_path=args.weights, data_path=args.data_path, dataset=args.dataset, backbone=args.backbone, aux=args.aux, num_features=256, aux_weight=0, se_loss=False, se_weight=0, base_lr=0, batch_size=1, max_epochs=0, ignore_index=args.ignore_index, dropout=0.0, scale_inv=args.scale_inv, augment=False, no_batchnorm=False, widehead=args.widehead, widehead_hr=args.widehead_hr, map_locatin="cpu", arch_option=0, block_depth=0, activation='lrelu', ) input_transform = module.val_transform # dataloader loader_kwargs = ( {"num_workers": args.workers, "pin_memory": True} if args.cuda else {} ) # model if isinstance(module.net, BaseNet): model = module.net else: model = module model = model.eval() model = model.cpu() scales = ( [0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25] if args.dataset == "citys" else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] ) model.mean = [0.5, 0.5, 0.5] model.std = [0.5, 0.5, 0.5] evaluator = LSeg_MultiEvalModule( model, scales=scales, flip=True ).cuda() evaluator.eval() transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), transforms.Resize([360,480]), ] ) return evaluator, transform """ # LSeg Demo """ lseg_model, lseg_transform = load_model() # to be revised uploaded_file = gr.inputs.Image(type='pil') input_labels = st.text_input("Input labels", value="dog, grass, other") gr.outputs.Label(type="confidences",num_top_classes=5) st.write("The labels are", input_labels) image = Image.open(uploaded_file) pimage = lseg_transform(np.array(image)).unsqueeze(0) labels = [] for label in input_labels.split(","): labels.append(label.strip()) with torch.no_grad(): outputs = lseg_model.parallel_forward(pimage, labels) predicts = [ torch.max(output, 1)[1].cpu().numpy() for output in outputs ] image = pimage[0].permute(1,2,0) image = image * 0.5 + 0.5 image = Image.fromarray(np.uint8(255*image)).convert("RGBA") pred = predicts[0] new_palette = get_new_pallete(len(labels)) mask, patches = get_new_mask_pallete(pred, new_palette, out_label_flag=True, labels=labels) seg = mask.convert("RGBA") fig = plt.figure() plt.subplot(121) plt.imshow(image) plt.axis('off') plt.subplot(122) plt.imshow(seg) plt.legend(handles=patches, loc='upper right', bbox_to_anchor=(1.3, 1), prop={'size': 5}) plt.axis('off') plt.tight_layout() #st.image([image,seg], width=700, caption=["Input image", "Segmentation"]) st.pyplot(fig) title = "LSeg" description = "Gradio demo for LSeg for semantic segmentation. To use it, simply upload your image, or click one of the examples to load them, then add any label set" article = "
" examples = ['test.jpeg'] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False, examples=examples).launch(enable_queue=True)