presidio_demo / presidio_streamlit.py
presidio's picture
Upload 7 files
1215818
raw
history blame
9.12 kB
"""Streamlit app for Presidio."""
from json import JSONEncoder
from typing import List
import pandas as pd
import spacy
import streamlit as st
from annotated_text import annotated_text
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from transformers_rec import (
STANFORD_COFIGURATION,
TransformersRecognizer,
BERT_DEID_CONFIGURATION,
)
# Helper methods
@st.cache_resource
def analyzer_engine(model_path: str):
"""Return AnalyzerEngine.
:param model_path: Which model to use for NER:
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"en_core_web_lg"
"""
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
# Set up NLP Engine according to the model of choice
if model_path == "en_core_web_lg":
if not spacy.util.is_package("en_core_web_lg"):
spacy.cli.download("en_core_web_lg")
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
}
else:
if not spacy.util.is_package("en_core_web_sm"):
spacy.cli.download("en_core_web_sm")
# Using a small spaCy model + a HF NER model
transformers_recognizer = TransformersRecognizer(model_path=model_path)
if model_path == "StanfordAIMI/stanford-deidentifier-base":
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
elif model_path == "obi/deid_roberta_i2b2":
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
# Use small spaCy model, no need for both spacy and HF models
# The transformers model is used here as a recognizer, not as an NlpEngine
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
registry.add_recognizer(transformers_recognizer)
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
return analyzer
@st.cache_resource
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
@st.cache_data
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine(st_model).get_supported_entities()
@st.cache_data
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
return analyzer_engine(st_model).analyze(**kwargs)
def anonymize(text: str, analyze_results: List[RecognizerResult]):
"""Anonymize identified input using Presidio Anonymizer.
:param text: Full text
:param analyze_results: list of results from presidio analyzer engine
"""
if st_operator == "mask":
operator_config = {
"type": "mask",
"masking_char": st_mask_char,
"chars_to_mask": st_number_of_chars,
"from_end": False,
}
elif st_operator == "encrypt":
operator_config = {"key": st_encrypt_key}
elif st_operator == "highlight":
operator_config = {"lambda": lambda x: x}
else:
operator_config = None
if st_operator == "highlight":
operator = "custom"
else:
operator = st_operator
res = anonymizer_engine().anonymize(
text,
analyze_results,
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
)
return res
def annotate(text: str, analyze_results: List[RecognizerResult]):
"""
Highlights every identified entity on top of the text.
:param text: full text
:param analyze_results: list of analyzer results.
"""
tokens = []
# Use the anonymizer to resolve overlaps
results = anonymize(text, analyze_results)
# sort by start index
results = sorted(results.items, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[: res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end: results[i + 1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
return tokens
st.set_page_config(page_title="Presidio demo", layout="wide")
# Sidebar
st.sidebar.header(
"""
PII De-Identification with Microsoft Presidio
"""
)
st.sidebar.info(
"Presidio is an open source customizable framework for PII detection and de-identification\n"
"[Code](https://aka.ms/presidio) | "
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
"[Installation](https://microsoft.github.io/presidio/installation/) | "
"[FAQ](https://microsoft.github.io/presidio/faq/)",
icon="ℹ️",
)
st.sidebar.markdown(
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)"
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)
st_model = st.sidebar.selectbox(
"NER model",
[
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"en_core_web_lg",
],
index=1,
)
st.sidebar.markdown("> Note: Models might take some time to download. ")
st_operator = st.sidebar.selectbox(
"De-identification approach",
["redact", "replace", "mask", "hash", "encrypt", "highlight"],
index=1,
)
if st_operator == "mask":
st_number_of_chars = st.sidebar.number_input(
"number of chars", value=15, min_value=0, max_value=100
)
st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
elif st_operator == "encrypt":
st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
st_threshold = st.sidebar.slider(
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations to findings", value=False
)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
)
# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer...")
engine = analyzer_engine(model_path=st_model)
analyzer_load_state.empty()
# Read default text
with open("demo_text.txt") as f:
demo_text = f.readlines()
# Create two columns for before and after
col1, col2 = st.columns(2)
# Before:
col1.subheader("Input string:")
st_text = col1.text_area(
label="Enter text",
value="".join(demo_text),
height=400,
)
st_analyze_results = analyze(
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
# After
if st_operator != "highlight":
with col2:
st.subheader(f"Output")
st_anonymize_results = anonymize(st_text, st_analyze_results)
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
else:
st.subheader("Highlighted")
annotated_tokens = annotate(st_text, st_analyze_results)
# annotated_tokens
annotated_text(*annotated_tokens)
# json result
class ToDictEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
return o.to_dict()
# table result
st.subheader(
"Findings" if not st_return_decision_process else "Findings with decision factors"
)
if st_analyze_results:
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
{
"entity_type": "Entity type",
"text": "Text",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
if st_return_decision_process:
analysis_explanation_df = pd.DataFrame.from_records(
[r.analysis_explanation.to_dict() for r in st_analyze_results]
)
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
st.text("No findings")