# Copyright (c) 2024 Jaerin Lee # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import concurrent.futures import time from typing import Any, Callable, List, Literal, Tuple, Union from PIL import Image import numpy as np import torch import torch.nn.functional as F import torch.cuda.amp as amp import torchvision.transforms as T import torchvision.transforms.functional as TF from diffusers import ( DiffusionPipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, ) def seed_everything(seed: int) -> None: torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True def load_model( model_key: str, sd_version: Literal['1.5', 'xl'], device: torch.device, dtype: torch.dtype, ) -> torch.nn.Module: if model_key.endswith('.safetensors'): if sd_version == '1.5': pipeline = StableDiffusionPipeline elif sd_version == 'xl': pipeline = StableDiffusionXLPipeline else: raise ValueError(f'Stable Diffusion version {sd_version} not supported.') return pipeline.from_single_file(model_key, torch_dtype=dtype).to(device) try: return DiffusionPipeline.from_pretrained(model_key, variant='fp16', torch_dtype=dtype).to(device) except: return DiffusionPipeline.from_pretrained(model_key, variant=None, torch_dtype=dtype).to(device) def get_cutoff(cutoff: float = None, scale: float = None) -> float: if cutoff is not None: return cutoff if scale is not None and cutoff is None: return 0.5 / scale raise ValueError('Either one of `cutoff`, or `scale` should be specified.') def get_scale(cutoff: float = None, scale: float = None) -> float: if scale is not None: return scale if cutoff is not None and scale is None: return 0.5 / cutoff raise ValueError('Either one of `cutoff`, or `scale` should be specified.') def filter_2d_by_kernel_1d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor: assert len(k.shape) in (1,), 'Kernel size should be one of (1,).' # assert len(k.shape) in (1, 2), 'Kernel size should be one of (1, 2).' b, c, h, w = x.shape ks = k.shape[-1] k = k.view(1, 1, -1).repeat(c, 1, 1) x = x.permute(0, 2, 1, 3) x = x.reshape(b * h, c, w) x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate') x = F.conv1d(x, k, groups=c) x = x.reshape(b, h, c, w).permute(0, 3, 2, 1).reshape(b * w, c, h) x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate') x = F.conv1d(x, k, groups=c) x = x.reshape(b, w, c, h).permute(0, 2, 3, 1) return x def filter_2d_by_kernel_2d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor: assert len(k.shape) in (2, 3), 'Kernel size should be one of (2, 3).' x = F.pad(x, ( k.shape[-2] // 2, (k.shape[-2] - 1) // 2, k.shape[-1] // 2, (k.shape[-1] - 1) // 2, ), mode='replicate') b, c, _, _ = x.shape if len(k.shape) == 2 or (len(k.shape) == 3 and k.shape[0] == 1): k = k.view(1, 1, *k.shape[-2:]).repeat(c, 1, 1, 1) x = F.conv2d(x, k, groups=c) elif len(k.shape) == 3: assert k.shape[0] == b, \ 'The number of kernels should match the batch size.' k = k.unsqueeze(1) x = F.conv2d(x.permute(1, 0, 2, 3), k, groups=b).permute(1, 0, 2, 3) return x @amp.autocast(False) def filter_by_kernel( x: torch.Tensor, k: torch.Tensor, is_batch: bool = False, ) -> torch.Tensor: k_dim = len(k.shape) if k_dim == 1 or k_dim == 2 and is_batch: return filter_2d_by_kernel_1d(x, k) elif k_dim == 2 or k_dim == 3 and is_batch: return filter_2d_by_kernel_2d(x, k) else: raise ValueError('Kernel size should be one of (1, 2, 3).') def gen_gauss_lowpass_filter_2d( std: torch.Tensor, window_size: int = None, ) -> torch.Tensor: # Gaussian kernel size is odd in order to preserve the center. if window_size is None: window_size = ( 2 * int(np.ceil(3 * std.max().detach().cpu().numpy())) + 1) y = torch.arange( window_size, dtype=std.dtype, device=std.device ).view(-1, 1).repeat(1, window_size) grid = torch.stack((y.t(), y), dim=-1) grid -= 0.5 * (window_size - 1) # (W, W) var = (std * std).unsqueeze(-1).unsqueeze(-1) distsq = (grid * grid).sum(dim=-1).unsqueeze(0).repeat(*std.shape, 1, 1) k = torch.exp(-0.5 * distsq / var) k /= k.sum(dim=(-2, -1), keepdim=True) return k def gaussian_lowpass( x: torch.Tensor, std: Union[float, Tuple[float], torch.Tensor] = None, cutoff: Union[float, torch.Tensor] = None, scale: Union[float, torch.Tensor] = None, ) -> torch.Tensor: if std is None: cutoff = get_cutoff(cutoff, scale) std = 0.5 / (np.pi * cutoff) if isinstance(std, (float, int)): std = (std, std) if isinstance(std, torch.Tensor): """Using nn.functional.conv2d with Gaussian kernels built in runtime is 80% faster than transforms.functional.gaussian_blur for individual items. (in GPU); However, in CPU, the result is exactly opposite. But you won't gonna run this on CPU, right? """ if len(list(s for s in std.shape if s != 1)) >= 2: raise NotImplementedError( 'Anisotropic Gaussian filter is not currently available.') # k.shape == (B, W, W). k = gen_gauss_lowpass_filter_2d(std=std.view(-1)) if k.shape[0] == 1: return filter_by_kernel(x, k[0], False) else: return filter_by_kernel(x, k, True) else: # Gaussian kernel size is odd in order to preserve the center. window_size = tuple(2 * int(np.ceil(3 * s)) + 1 for s in std) return TF.gaussian_blur(x, window_size, std) def blend( fg: Union[torch.Tensor, Image.Image], bg: Union[torch.Tensor, Image.Image], mask: Union[torch.Tensor, Image.Image], std: float = 0.0, ) -> Image.Image: if not isinstance(fg, torch.Tensor): fg = T.ToTensor()(fg) if not isinstance(bg, torch.Tensor): bg = T.ToTensor()(bg) if not isinstance(mask, torch.Tensor): mask = (T.ToTensor()(mask) < 0.5).float()[:1] if std > 0: mask = gaussian_lowpass(mask[None], std)[0].clip_(0, 1) return T.ToPILImage()(fg * mask + bg * (1 - mask)) def get_panorama_views( panorama_height: int, panorama_width: int, window_size: int = 64, ) -> tuple[List[Tuple[int]], torch.Tensor]: stride = window_size // 2 is_horizontal = panorama_width > panorama_height num_blocks_height = (panorama_height - window_size + stride - 1) // stride + 1 num_blocks_width = (panorama_width - window_size + stride - 1) // stride + 1 total_num_blocks = num_blocks_height * num_blocks_width half_fwd = torch.linspace(0, 1, (window_size + 1) // 2) half_rev = half_fwd.flip(0) if window_size % 2 == 1: half_rev = half_rev[1:] c = torch.cat((half_fwd, half_rev)) one = torch.ones_like(c) f = c.clone() f[:window_size // 2] = 1 b = c.clone() b[-(window_size // 2):] = 1 h = [one] if num_blocks_height == 1 else [f] + [c] * (num_blocks_height - 2) + [b] w = [one] if num_blocks_width == 1 else [f] + [c] * (num_blocks_width - 2) + [b] views = [] masks = torch.zeros(total_num_blocks, panorama_height, panorama_width) # (n, h, w) for i in range(total_num_blocks): hi, wi = i // num_blocks_width, i % num_blocks_width h_start = hi * stride h_end = min(h_start + window_size, panorama_height) w_start = wi * stride w_end = min(w_start + window_size, panorama_width) views.append((h_start, h_end, w_start, w_end)) h_width = h_end - h_start w_width = w_end - w_start masks[i, h_start:h_end, w_start:w_end] = h[hi][:h_width, None] * w[wi][None, :w_width] # Sum of the mask weights at each pixel `masks.sum(dim=1)` must be unity. return views, masks[None] # (1, n, h, w) def shift_to_mask_bbox_center(im: torch.Tensor, mask: torch.Tensor, reverse: bool = False) -> List[int]: h, w = mask.shape[-2:] device = mask.device mask = mask.reshape(-1, h, w) # assert mask.shape[0] == im.shape[0] h_occupied = mask.sum(dim=-2) > 0 w_occupied = mask.sum(dim=-1) > 0 l = torch.argmax(h_occupied * torch.arange(w, 0, -1).to(device), 1, keepdim=True).cpu() r = torch.argmax(h_occupied * torch.arange(w).to(device), 1, keepdim=True).cpu() t = torch.argmax(w_occupied * torch.arange(h, 0, -1).to(device), 1, keepdim=True).cpu() b = torch.argmax(w_occupied * torch.arange(h).to(device), 1, keepdim=True).cpu() tb = (t + b + 1) // 2 lr = (l + r + 1) // 2 shifts = (tb - (h // 2), lr - (w // 2)) shifts = torch.cat(shifts, dim=1) # (p, 2) if reverse: shifts = shifts * -1 return torch.stack([i.roll(shifts=s.tolist(), dims=(-2, -1)) for i, s in zip(im, shifts)], dim=0) class Streamer: def __init__(self, fn: Callable, ema_alpha: float = 0.9) -> None: self.fn = fn self.ema_alpha = ema_alpha self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) self.future = self.executor.submit(fn) self.image = None self.prev_exec_time = 0 self.ema_exec_time = 0 @property def throughput(self) -> float: return 1.0 / self.ema_exec_time if self.ema_exec_time else float('inf') def timed_fn(self) -> Any: start = time.time() res = self.fn() end = time.time() self.prev_exec_time = end - start self.ema_exec_time = self.ema_exec_time * self.ema_alpha + self.prev_exec_time * (1 - self.ema_alpha) return res def __call__(self) -> Any: if self.future.done() or self.image is None: # get the result (the new image) and start a new task image = self.future.result() self.future = self.executor.submit(self.timed_fn) self.image = image return image else: # if self.fn() is not ready yet, use the previous image # NOTE: This assumes that we have access to a previously generated image here. # If there's no previous image (i.e., this is the first invocation), you could fall # back to some default image or handle it differently based on your requirements. return self.image