# -*- coding: utf-8 -*- """app.py Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1eyNEXhQE4T_7cq-MsPQ77p7h6xdrOpzk """ import gradio as gr import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer # 모델 경로 설정 model_path = "./model" # 업로드된 모델 디렉토리 경로 # 모델과 토크나이저 로드 model = AutoModelForSequenceClassification.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained("klue/bert-base") # 예측 함수 def predict(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) probabilities = torch.sigmoid(outputs.logits) depression_prob = probabilities[0, 1].item() if depression_prob > 0.5: return f"Depressed (Confidence: {depression_prob:.2%})" else: return f"Not Depressed (Confidence: {1 - depression_prob:.2%})" # Gradio 인터페이스 interface = gr.Interface( fn=predict, inputs=gr.Textbox(label="Enter your text here"), outputs=gr.Textbox(label="Result"), title="Depression Detection", description="Predict the likelihood of depression based on text input.", ) interface.launch()