--- title: whisper.api emoji: 🐳 colorFrom: purple colorTo: gray sdk: docker app_port: 7860 --- # whisper.api This project provides an API with user level access support to transcribe speech to text using a finetuned and processed Whisper ASR model. ## Installation To install the necessary dependencies, run the following command: ```bash # Install ffmpeg for Audio Processing sudo apt install ffmpeg # Install Python Package pip install -r requirements.txt ``` # Running the Project To run the project, use the following command: ```bash uvicorn app.main:app --reload ``` # Example to Transcribe a File To upload a file and transcribe it, use the following command: Note: The token is a dummy token and will not work. Please use the token provided by the admin. ```bash # Modify the token and audioFilePath curl -X 'POST' \ 'http://localhost:8000/api/v1/transcribe/?model=tiny.en.q5' \ -H 'accept: application/json' \ -H 'Authentication: e9b7658aa93342c492fa64153849c68b8md9uBmaqCwKq4VcgkuBD0G54FmsE8JT' \ -H 'Content-Type: multipart/form-data' \ -F 'file=@audioFilePath.wav;type=audio/wav' ``` ## License [MIT](https://choosealicense.com/licenses/mit/) ## Reference & Credits - [https://github.com/openai/whisper](https://github.com/openai/whisper) - [https://openai.com/blog/whisper/](https://openai.com/blog/whisper/) - [https://github.com/ggerganov/whisper.cpp](https://github.com/ggerganov/whisper.cpp) ## Authors - [Ved Gupta](https://www.github.com/innovatorved) ## 🚀 About Me I'm a Developer i will feel the code then write. ## Support For support, email vedgupta@protonmail.com