import os import glob import time import numpy as np from PIL import Image from pathlib import Path from tqdm.notebook import tqdm import matplotlib.pyplot as plt from skimage.color import rgb2lab, lab2rgb import torch from torch import nn, optim from torchvision import transforms from torchvision.utils import make_grid from torch.utils.data import Dataset, DataLoader device = torch.device("cuda" if torch.cuda.is_available() else "cpu") import requests import gdown SIZE = 256 def download_from_drive(url , output): try: gdown.download(url, output, quiet=False) return True except: print("Error Occured in Downloading model from Gdrive") return False class AverageMeter: def __init__(self): self.reset() def reset(self): self.count, self.avg, self.sum = [0.0] * 3 def update(self, val, count=1): self.count += count self.sum += count * val self.avg = self.sum / self.count def create_loss_meters(): loss_D_fake = AverageMeter() loss_D_real = AverageMeter() loss_D = AverageMeter() loss_G_GAN = AverageMeter() loss_G_L1 = AverageMeter() loss_G = AverageMeter() return { "loss_D_fake": loss_D_fake, "loss_D_real": loss_D_real, "loss_D": loss_D, "loss_G_GAN": loss_G_GAN, "loss_G_L1": loss_G_L1, "loss_G": loss_G, } def update_losses(model, loss_meter_dict, count): for loss_name, loss_meter in loss_meter_dict.items(): loss = getattr(model, loss_name) loss_meter.update(loss.item(), count=count) def lab_to_rgb(L, ab): """ Takes a batch of images """ L = (L + 1.0) * 50.0 ab = ab * 110.0 Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy() rgb_imgs = [] for img in Lab: img_rgb = lab2rgb(img) rgb_imgs.append(img_rgb) return np.stack(rgb_imgs, axis=0) def visualize(model, data, save=True): model.net_G.eval() with torch.no_grad(): model.setup_input(data) model.forward() model.net_G.train() fake_color = model.fake_color.detach() real_color = model.ab L = model.L fake_imgs = lab_to_rgb(L, fake_color) real_imgs = lab_to_rgb(L, real_color) fig = plt.figure(figsize=(15, 8)) for i in range(5): ax = plt.subplot(3, 5, i + 1) ax.imshow(L[i][0].cpu(), cmap="gray") ax.axis("off") ax = plt.subplot(3, 5, i + 1 + 5) ax.imshow(fake_imgs[i]) ax.axis("off") ax = plt.subplot(3, 5, i + 1 + 10) ax.imshow(real_imgs[i]) ax.axis("off") plt.show() if save: fig.savefig(f"colorization_{time.time()}.png") def log_results(loss_meter_dict): for loss_name, loss_meter in loss_meter_dict.items(): print(f"{loss_name}: {loss_meter.avg:.5f}") def create_lab_tensors(image): """ This function receives an image path or a direct image input and creates a dictionary of L and ab tensors. Args: - image: either a path to the image file or a direct image input. Returns: - lab_dict: dictionary containing the L and ab tensors. """ if isinstance(image, str): # Open the image and convert it to RGB format img = Image.open(image).convert("RGB") else: if isinstance(image, np.ndarray): img = Image.fromarray(image) else: img = image img = img.convert("RGB") custom_transforms = transforms.Compose( [ transforms.Resize((SIZE, SIZE), Image.BICUBIC), transforms.RandomHorizontalFlip(), # A little data augmentation! ] ) img = custom_transforms(img) img = np.array(img) img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b img_lab = transforms.ToTensor()(img_lab) L = img_lab[[0], ...] / 50.0 - 1.0 # Between -1 and 1 L = L.unsqueeze(0) ab = img_lab[[1, 2], ...] / 110.0 # Between -1 and 1 return {"L": L, "ab": ab} def predict_and_visualize_single_image(model, data, save=True): model.net_G.eval() with torch.no_grad(): model.setup_input(data) model.forward() fake_color = model.fake_color.detach() L = model.L fake_imgs = lab_to_rgb(L, fake_color) fig, axs = plt.subplots(1, 2, figsize=(8, 4)) axs[0].imshow(L[0][0].cpu(), cmap="gray") axs[0].set_title("Grey Image") axs[0].axis("off") axs[1].imshow(fake_imgs[0]) axs[1].set_title("Colored Image") axs[1].axis("off") plt.show() if save: fig.savefig(f"colorization_{time.time()}.png") def predict_color(model, image, save=False): """ This function receives an image path or a direct image input and creates a dictionary of L and ab tensors. Args: - model : Pytorch Gray Scale to Colorization Model - image: either a path to the image file or a direct image input. """ data = create_lab_tensors(image) predict_and_visualize_single_image(model, data, save) def load_model_with_cpu(model_class, file_path): """ Load PyTorch model from file. Args: model_class (torch.nn.Module): PyTorch model class to load. file_path (str): File path to load the model from. Returns: model (torch.nn.Module): Loaded PyTorch model. """ model = model_class() model.load_state_dict(torch.load(file_path, map_location=torch.device("cpu"))) return model def load_model_with_gpu(model_class, file_path): """ Load PyTorch model from file. Args: model_class (torch.nn.Module): PyTorch model class to load. file_path (str): File path to load the model from. Returns: model (torch.nn.Module): Loaded PyTorch model. """ model = model_class() model.load_state_dict(torch.load(file_path)) return model