Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import io | |
import json | |
import logging | |
import re | |
from typing import List, Union | |
import numpy as np | |
from box import Box | |
from pydub import AudioSegment | |
from scipy.io import wavfile | |
from modules import generate_audio | |
from modules.api.utils import calc_spk_style | |
from modules.normalization import text_normalize | |
from modules.SentenceSplitter import SentenceSplitter | |
from modules.speaker import Speaker | |
from modules.ssml_parser.SSMLParser import SSMLBreak, SSMLContext, SSMLSegment | |
from modules.utils import rng | |
from modules.utils.audio import apply_prosody_to_audio_segment | |
logger = logging.getLogger(__name__) | |
def audio_data_to_segment_slow(audio_data, sr): | |
byte_io = io.BytesIO() | |
wavfile.write(byte_io, rate=sr, data=audio_data) | |
byte_io.seek(0) | |
return AudioSegment.from_file(byte_io, format="wav") | |
def clip_audio(audio_data: np.ndarray, threshold: float = 0.99): | |
audio_data = np.clip(audio_data, -threshold, threshold) | |
return audio_data | |
def normalize_audio(audio_data: np.ndarray, norm_factor: float = 0.8): | |
max_amplitude = np.max(np.abs(audio_data)) | |
if max_amplitude > 0: | |
audio_data = audio_data / max_amplitude * norm_factor | |
return audio_data | |
def audio_data_to_segment(audio_data: np.ndarray, sr: int): | |
""" | |
optimize: https://github.com/lenML/ChatTTS-Forge/issues/57 | |
""" | |
audio_data = normalize_audio(audio_data) | |
audio_data = clip_audio(audio_data) | |
audio_data = (audio_data * 32767).astype(np.int16) | |
audio_segment = AudioSegment( | |
audio_data.tobytes(), | |
frame_rate=sr, | |
sample_width=audio_data.dtype.itemsize, | |
channels=1, | |
) | |
return audio_segment | |
def combine_audio_segments(audio_segments: list[AudioSegment]) -> AudioSegment: | |
combined_audio = AudioSegment.empty() | |
for segment in audio_segments: | |
combined_audio += segment | |
return combined_audio | |
def to_number(value, t, default=0): | |
try: | |
number = t(value) | |
return number | |
except (ValueError, TypeError) as e: | |
return default | |
class TTSAudioSegment(Box): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self._type = kwargs.get("_type", "voice") | |
self.text = kwargs.get("text", "") | |
self.temperature = kwargs.get("temperature", 0.3) | |
self.top_P = kwargs.get("top_P", 0.5) | |
self.top_K = kwargs.get("top_K", 20) | |
self.spk = kwargs.get("spk", -1) | |
self.infer_seed = kwargs.get("infer_seed", -1) | |
self.prompt1 = kwargs.get("prompt1", "") | |
self.prompt2 = kwargs.get("prompt2", "") | |
self.prefix = kwargs.get("prefix", "") | |
class SynthesizeSegments: | |
def __init__(self, batch_size: int = 8, eos="", spliter_thr=100): | |
self.batch_size = batch_size | |
self.batch_default_spk_seed = rng.np_rng() | |
self.batch_default_infer_seed = rng.np_rng() | |
self.eos = eos | |
self.spliter_thr = spliter_thr | |
def segment_to_generate_params( | |
self, segment: Union[SSMLSegment, SSMLBreak] | |
) -> TTSAudioSegment: | |
if isinstance(segment, SSMLBreak): | |
return TTSAudioSegment(_type="break") | |
if segment.get("params", None) is not None: | |
params = segment.get("params") | |
text = segment.get("text", None) or segment.text or "" | |
return TTSAudioSegment(**params, text=text) | |
text = segment.get("text", None) or segment.text or "" | |
is_end = segment.get("is_end", False) | |
text = str(text).strip() | |
attrs = segment.attrs | |
spk = attrs.spk | |
style = attrs.style | |
ss_params = calc_spk_style(spk, style) | |
if "spk" in ss_params: | |
spk = ss_params["spk"] | |
seed = to_number(attrs.seed, int, ss_params.get("seed") or -1) | |
top_k = to_number(attrs.top_k, int, None) | |
top_p = to_number(attrs.top_p, float, None) | |
temp = to_number(attrs.temp, float, None) | |
prompt1 = attrs.prompt1 or ss_params.get("prompt1") | |
prompt2 = attrs.prompt2 or ss_params.get("prompt2") | |
prefix = attrs.prefix or ss_params.get("prefix") | |
disable_normalize = attrs.get("normalize", "") == "False" | |
seg = TTSAudioSegment( | |
_type="voice", | |
text=text, | |
temperature=temp if temp is not None else 0.3, | |
top_P=top_p if top_p is not None else 0.5, | |
top_K=top_k if top_k is not None else 20, | |
spk=spk if spk else -1, | |
infer_seed=seed if seed else -1, | |
prompt1=prompt1 if prompt1 else "", | |
prompt2=prompt2 if prompt2 else "", | |
prefix=prefix if prefix else "", | |
) | |
if not disable_normalize: | |
seg.text = text_normalize(text, is_end=is_end) | |
# NOTE 每个batch的默认seed保证前后一致即使是没设置spk的情况 | |
if seg.spk == -1: | |
seg.spk = self.batch_default_spk_seed | |
if seg.infer_seed == -1: | |
seg.infer_seed = self.batch_default_infer_seed | |
return seg | |
def process_break_segments( | |
self, | |
src_segments: List[SSMLBreak], | |
bucket_segments: List[SSMLBreak], | |
audio_segments: List[AudioSegment], | |
): | |
for segment in bucket_segments: | |
index = src_segments.index(segment) | |
audio_segments[index] = AudioSegment.silent( | |
duration=int(segment.attrs.duration) | |
) | |
def process_voice_segments( | |
self, | |
src_segments: List[SSMLSegment], | |
bucket: List[SSMLSegment], | |
audio_segments: List[AudioSegment], | |
): | |
for i in range(0, len(bucket), self.batch_size): | |
batch = bucket[i : i + self.batch_size] | |
param_arr = [self.segment_to_generate_params(segment) for segment in batch] | |
def append_eos(text: str): | |
text = text.strip() | |
eos_arr = ["[uv_break]", "[v_break]", "[lbreak]", "[llbreak]"] | |
has_eos = False | |
for eos in eos_arr: | |
if eos in text: | |
has_eos = True | |
break | |
if not has_eos: | |
text += self.eos | |
return text | |
# 这里会添加 end_of_text 到 text 之后 | |
texts = [append_eos(params.text) for params in param_arr] | |
params = param_arr[0] | |
audio_datas = generate_audio.generate_audio_batch( | |
texts=texts, | |
temperature=params.temperature, | |
top_P=params.top_P, | |
top_K=params.top_K, | |
spk=params.spk, | |
infer_seed=params.infer_seed, | |
prompt1=params.prompt1, | |
prompt2=params.prompt2, | |
prefix=params.prefix, | |
) | |
for idx, segment in enumerate(batch): | |
sr, audio_data = audio_datas[idx] | |
rate = float(segment.get("rate", "1.0")) | |
volume = float(segment.get("volume", "0")) | |
pitch = float(segment.get("pitch", "0")) | |
audio_segment = audio_data_to_segment(audio_data, sr) | |
audio_segment = apply_prosody_to_audio_segment( | |
audio_segment, rate=rate, volume=volume, pitch=pitch | |
) | |
# compare by Box object | |
original_index = src_segments.index(segment) | |
audio_segments[original_index] = audio_segment | |
def bucket_segments( | |
self, segments: List[Union[SSMLSegment, SSMLBreak]] | |
) -> List[List[Union[SSMLSegment, SSMLBreak]]]: | |
buckets = {"<break>": []} | |
for segment in segments: | |
if isinstance(segment, SSMLBreak): | |
buckets["<break>"].append(segment) | |
continue | |
params = self.segment_to_generate_params(segment) | |
if isinstance(params.spk, Speaker): | |
params.spk = str(params.spk.id) | |
key = json.dumps( | |
{k: v for k, v in params.items() if k != "text"}, sort_keys=True | |
) | |
if key not in buckets: | |
buckets[key] = [] | |
buckets[key].append(segment) | |
return buckets | |
def split_segments(self, segments: List[Union[SSMLSegment, SSMLBreak]]): | |
""" | |
将 segments 中的 text 经过 spliter 处理成多个 segments | |
""" | |
spliter = SentenceSplitter(threshold=self.spliter_thr) | |
ret_segments: List[Union[SSMLSegment, SSMLBreak]] = [] | |
for segment in segments: | |
if isinstance(segment, SSMLBreak): | |
ret_segments.append(segment) | |
continue | |
text = segment.text | |
if not text: | |
continue | |
sentences = spliter.parse(text) | |
for sentence in sentences: | |
seg = SSMLSegment( | |
text=sentence, | |
attrs=segment.attrs.copy(), | |
params=copy.copy(segment.params), | |
) | |
ret_segments.append(seg) | |
setattr(seg, "_idx", len(ret_segments) - 1) | |
def is_none_speak_segment(segment: SSMLSegment): | |
text = segment.text.strip() | |
regexp = r"\[[^\]]+?\]" | |
text = re.sub(regexp, "", text) | |
text = text.strip() | |
if not text: | |
return True | |
return False | |
# 将 none_speak 合并到前一个 speak segment | |
for i in range(1, len(ret_segments)): | |
if is_none_speak_segment(ret_segments[i]): | |
ret_segments[i - 1].text += ret_segments[i].text | |
ret_segments[i].text = "" | |
# 移除空的 segment | |
ret_segments = [seg for seg in ret_segments if seg.text.strip()] | |
return ret_segments | |
def synthesize_segments( | |
self, segments: List[Union[SSMLSegment, SSMLBreak]] | |
) -> List[AudioSegment]: | |
segments = self.split_segments(segments) | |
audio_segments = [None] * len(segments) | |
buckets = self.bucket_segments(segments) | |
break_segments = buckets.pop("<break>") | |
self.process_break_segments(segments, break_segments, audio_segments) | |
buckets = list(buckets.values()) | |
for bucket in buckets: | |
self.process_voice_segments(segments, bucket, audio_segments) | |
return audio_segments | |
# 示例使用 | |
if __name__ == "__main__": | |
ctx1 = SSMLContext() | |
ctx1.spk = 1 | |
ctx1.seed = 42 | |
ctx1.temp = 0.1 | |
ctx2 = SSMLContext() | |
ctx2.spk = 2 | |
ctx2.seed = 42 | |
ctx2.temp = 0.1 | |
ssml_segments = [ | |
SSMLSegment(text="大🍌,一条大🍌,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()), | |
SSMLBreak(duration_ms=1000), | |
SSMLSegment(text="大🍉,一个大🍉,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()), | |
SSMLSegment(text="大🍊,一个大🍊,嘿,你的感觉真的很奇妙", attrs=ctx2.copy()), | |
] | |
synthesizer = SynthesizeSegments(batch_size=2) | |
audio_segments = synthesizer.synthesize_segments(ssml_segments) | |
print(audio_segments) | |
combined_audio = combine_audio_segments(audio_segments) | |
combined_audio.export("output.wav", format="wav") | |