import random import json import torch from model import NeuralNet from nltk_utils import bag_of_words, tokenize # Prompt three most commonly asked FAQs samples = "Kindly visit our website " device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') import json with open(r'C:\Users\vilsons\Documents\chatbot-deployment-main\flask chatbot\intents.json', 'r', encoding='utf-8') as json_data: intents = json.load(json_data) FILE = "data.pth" data = torch.load(FILE) input_size = data["input_size"] hidden_size = data["hidden_size"] output_size = data["output_size"] all_words = data['all_words'] tags = data['tags'] model_state = data["model_state"] model = NeuralNet(input_size, hidden_size, output_size).to(device) model.load_state_dict(model_state) model.eval() bot_name = "NEC Chatbot" def get_response(msg): sentence = tokenize(msg) X = bag_of_words(sentence, all_words) X = X.reshape(1, X.shape[0]) X = torch.from_numpy(X).to(device) output = model(X) _, predicted = torch.max(output, dim=1) tag = tags[predicted.item()] probs = torch.softmax(output, dim=1) prob = probs[0][predicted.item()] if prob.item() > 0.85: #Increasing specifisity to reduce incorrect classifications for intent in intents['intents']: if tag == intent["tag"]: return random.choice(intent['responses']) return f"I'm sorry, but I cannot understand your query. {samples} " if __name__ == "__main__": print("Let's chat! (type 'quit' to exit)") while True: # sentence = "do you use credit cards?" sentence = input("You: ") if sentence == "quit": break resp = get_response(sentence) print(resp)