import os from typing import List, Optional from langchain import ConversationChain, PromptTemplate from langchain.chains.base import Chain from langchain.memory import ConversationSummaryBufferMemory from app_modules.llm_inference import LLMInference def get_llama_2_prompt_template(): B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<>\n", "\n<>\n\n" instruction = "Chat History:\n\n{history} \n\nUser: {input}" system_prompt = "You are a helpful assistant, you always only answer for the assistant then you stop. Read the chat history to get context" # system_prompt = """\ # You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. \n\nDo not output any emotional expression. Read the chat history to get context.\ # """ SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST return prompt_template class ChatChain(LLMInference): def __init__(self, llm_loader): super().__init__(llm_loader) def create_chain(self, inputs) -> Chain: template = ( get_llama_2_prompt_template() if os.environ.get("USE_LLAMA_2_PROMPT_TEMPLATE") == "true" else """You are a chatbot having a conversation with a human. {history} Human: {input} Chatbot:""" ) print(f"template: {template}") prompt = PromptTemplate(input_variables=["history", "input"], template=template) memory = ConversationSummaryBufferMemory( llm=self.llm_loader.llm, max_token_limit=1024, return_messages=True ) llm_chain = ConversationChain( llm=self.llm_loader.llm, prompt=prompt, verbose=True, memory=memory, ) return llm_chain def run_chain(self, chain, inputs, callbacks: Optional[List] = []): return chain({"input": inputs["question"]}, callbacks)