import os import re import pandas as pd import evaluate import seaborn as sns import matplotlib.pyplot as plt from datasets import load_dataset from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from tqdm import tqdm from eval_modules.calc_repetitions import * from llm_toolkit.llm_utils import load_tokenizer print(f"loading {__file__}") bleu = evaluate.load("bleu") rouge = evaluate.load("rouge") meteor = evaluate.load("meteor") accuracy = evaluate.load("accuracy") def extract_answer(text, debug=False): if text: # Remove the begin and end tokens text = re.sub( r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE ) if debug: print("--------\nstep 1:", text) text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE) if debug: print("--------\nstep 2:", text) text = re.sub( r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE ) if debug: print("--------\nstep 3:", text) return text def calc_metrics(references, predictions, debug=False): assert len(references) == len( predictions ), f"lengths are difference: {len(references)} != {len(predictions)}" predictions = [extract_answer(text) for text in predictions] results = {} results["meteor"] = meteor.compute(predictions=predictions, references=references)[ "meteor" ] results["bleu_scores"] = bleu.compute( predictions=predictions, references=references, max_order=4 ) results["rouge_scores"] = rouge.compute( predictions=predictions, references=references ) correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)] accuracy = sum(correct) / len(references) results["accuracy"] = accuracy if debug: correct_ids = [i for i, c in enumerate(correct) if c == 1] results["correct_ids"] = correct_ids return results def save_results(model_name, results_path, dataset, predictions, debug=False): if not os.path.exists(results_path): # Get the directory part of the file path dir_path = os.path.dirname(results_path) # Create all directories in the path (if they don't exist) os.makedirs(dir_path, exist_ok=True) df = dataset.to_pandas() df.drop(columns=["text", "prompt"], inplace=True) else: df = pd.read_csv(results_path, on_bad_lines="warn") df[model_name] = predictions if debug: print(df.head(1)) df.to_csv(results_path, index=False) def load_translation_dataset(data_path, tokenizer=None): train_data_file = data_path.replace(".tsv", "-train.tsv") test_data_file = data_path.replace(".tsv", "-test.tsv") if not os.path.exists(train_data_file): print("generating train/test data files") dataset = load_dataset( "csv", data_files=data_path, delimiter="\t", split="train" ) print(len(dataset)) dataset = dataset.filter(lambda x: x["chinese"] and x["english"]) datasets = dataset.train_test_split(test_size=0.2) print(len(dataset)) # Convert to pandas DataFrame train_df = pd.DataFrame(datasets["train"]) test_df = pd.DataFrame(datasets["test"]) # Save to TSV train_df.to_csv(train_data_file, sep="\t", index=False) test_df.to_csv(test_data_file, sep="\t", index=False) print("loading train/test data files") datasets = load_dataset( "csv", data_files={"train": train_data_file, "test": test_data_file}, delimiter="\t", ) if tokenizer: translation_prompt = "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{}" def formatting_prompts_func(examples): inputs = examples["chinese"] outputs = examples["english"] messages = [ { "role": "system", "content": "You are an expert in translating Chinese to English.", }, None, ] model_name = os.getenv("MODEL_NAME") # if "mistral" in model_name.lower(): # messages = messages[1:] texts = [] prompts = [] for input, output in zip(inputs, outputs): prompt = translation_prompt.format(input) messages[-1] = {"role": "user", "content": prompt} prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) prompts.append(prompt) texts.append(prompt + output + tokenizer.eos_token) return {"text": texts, "prompt": prompts} datasets = datasets.map( formatting_prompts_func, batched=True, ) print(datasets) return datasets def count_entries_with_max_tokens(entries, max_tokens): """ Count the number of entries with the max output tokens or more. Parameters: entries (list of int): List of token counts for each entry. max_tokens (int): The maximum token threshold. Returns: int: The number of entries with token counts greater than or equal to max_tokens. """ count = 0 for tokens in entries: if tokens >= max_tokens: count += 1 return count def get_metrics(df, max_output_tokens=2048): metrics_df = pd.DataFrame(df.columns.T)[2:] metrics_df.rename(columns={0: "model"}, inplace=True) metrics_df["rpp"] = metrics_df["model"].apply(lambda x: x.split("rpp-")[-1]) metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/rpp-")[0]) metrics_df.reset_index(inplace=True) metrics_df = metrics_df.drop(columns=["index"]) tokenizers = { model: load_tokenizer(model) for model in metrics_df["model"].unique() } meteor = [] bleu_1 = [] rouge_l = [] ews_score = [] repetition_score = [] total_repetitions = [] num_entries_with_max_output_tokens = [] for col in df.columns[2:]: metrics = calc_metrics(df["english"], df[col], debug=True) print(f"{col}: {metrics}") meteor.append(metrics["meteor"]) bleu_1.append(metrics["bleu_scores"]["bleu"]) rouge_l.append(metrics["rouge_scores"]["rougeL"]) df[["ews_score", "repetition_score", "total_repetitions"]] = df[col].apply( detect_scores ) ews_score.append(df["ews_score"].mean()) repetition_score.append(df["repetition_score"].mean()) total_repetitions.append(df["total_repetitions"].mean()) df["output_tokens"] = df[col].apply( lambda x: len(tokenizers[col.split("/rpp")[0]](x)["input_ids"]) ) num_entries_with_max_output_tokens.append( count_entries_with_max_tokens(df["output_tokens"], max_output_tokens) ) metrics_df["meteor"] = meteor metrics_df["bleu_1"] = bleu_1 metrics_df["rouge_l"] = rouge_l metrics_df["ews_score"] = ews_score metrics_df["repetition_score"] = repetition_score metrics_df["total_repetitions"] = total_repetitions metrics_df[ "num_entries_with_max_output_tokens" ] = num_entries_with_max_output_tokens return metrics_df def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)): plt.figure(figsize=figsize) df_melted = pd.melt( metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"] ) barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted) # Set different hatches for each model hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"] # Create a dictionary to map models to hatches model_hatches = { model: hatches[i % len(hatches)] for i, model in enumerate(metrics_df["model"].unique()) } # Apply hatches based on the model num_vars = len(df_melted["variable"].unique()) for i, bar in enumerate(barplot.patches): model = df_melted["model"].iloc[i // num_vars] bar.set_hatch(model_hatches[model]) # Manually update legend to match the bar hatches handles, labels = barplot.get_legend_handles_labels() for handle, model in zip(handles, metrics_df["model"].unique()): handle.set_hatch(model_hatches[model]) barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"]) for p in barplot.patches: if p.get_height() == 0: continue barplot.annotate( f"{p.get_height():.2f}", (p.get_x() + p.get_width() / 2.0, p.get_height()), ha="center", va="center", xytext=(0, 10), textcoords="offset points", ) barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics") plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center") plt.show() def plot_times(perf_df, ylim=0.421): # Adjusted code to put "train-time" bars in red at the bottom fig, ax1 = plt.subplots(figsize=(12, 10)) color_train = "tab:red" color_eval = "orange" ax1.set_xlabel("Models") ax1.set_ylabel("Time (mins)") ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions ax1.set_xticklabels(perf_df["model"], rotation=90) # Plot "train-time" first so it's at the bottom ax1.bar( perf_df["model"], perf_df["train-time(mins)"], color=color_train, label="train-time", ) # Then, plot "eval-time" on top of "train-time" ax1.bar( perf_df["model"], perf_df["eval-time(mins)"], bottom=perf_df["train-time(mins)"], color=color_eval, label="eval-time", ) ax1.tick_params(axis="y") ax1.legend(loc="upper left") if "meteor" in perf_df.columns: ax2 = ax1.twinx() color_meteor = "tab:blue" ax2.set_ylabel("METEOR", color=color_meteor) ax2.plot( perf_df["model"], perf_df["meteor"], color=color_meteor, marker="o", label="meteor", ) ax2.tick_params(axis="y", labelcolor=color_meteor) ax2.legend(loc="upper right") ax2.set_ylim(ax2.get_ylim()[0], ylim) # Show numbers in bars for p in ax1.patches: height = p.get_height() if height == 0: # Skip bars with height 0 continue ax1.annotate( f"{height:.2f}", (p.get_x() + p.get_width() / 2.0, p.get_y() + height), ha="center", va="center", xytext=(0, -10), textcoords="offset points", ) fig.tight_layout() plt.show() def translate_via_llm(text): base_url = os.getenv("OPENAI_BASE_URL") or "http://localhost:8000/v1" llm = ChatOpenAI( model="gpt-4o", temperature=0, max_tokens=None, timeout=None, max_retries=2, base_url=base_url, ) prompt = ChatPromptTemplate.from_messages( [ ( "human", "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{input}", ), ] ) chain = prompt | llm response = chain.invoke( { "input": text, } ) return response.content def translate(text, cache_dict): if text in cache_dict: return cache_dict[text] else: translated_text = translate_via_llm(text) cache_dict[text] = translated_text return translated_text