import os import re import math import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mtick import seaborn as sns import nltk import evaluate import traceback bert_score = evaluate.load("bertscore") meteor = evaluate.load("meteor") print(f"loading: {__file__}") # pattern_non_word_char_repetition = re.compile(r"\s{5,}") # pattern_text_repetitions = re.compile(r"(.{5}.*)\s*((\1)\s*)+", re.M | re.DOTALL) # final version pattern_non_word_char_repetition = re.compile(r"[\s\W]{5,}") pattern_text_repetitions = re.compile( r"(?P.{5}.*?)(?:[\s\W]*(?P=repeat))+", re.M | re.DOTALL | re.IGNORECASE ) # Explanation of the Regex Pattern: # (?P.{5}.*?): Captures any sequence of characters with minimal length of 5 and names this group repeat. # .*?: Matches zero or more characters, non-greedily (as few as possible). # (?:[\s\W]+(?P=repeat))+: A non-capturing group that matches one or more repetitions of: # [\s\W]+: One or more whitespace or non-word characters (spaces, punctuation, etc.). # (?P=repeat): A backreference to the named group repeat. def del_non_word_char_repetition(text, debug=False): count = 0 if isinstance(text, str): if debug: print("----detect non-word characters repetition----") count = len(text) text = pattern_non_word_char_repetition.sub("\t", text) count -= len(text) if debug and count: print(f"removed non-word characters repetition: {count}") return text, count # final version for repetition detection def detect_text_repetitions(text, debug=False): count = 0 if isinstance(text, str): if debug: print("----detect text repetitions----") matches = pattern_text_repetitions.finditer(text) for match in matches: if debug: print(match) for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 print( "Group {groupNum} found at {start}-{end}: `{group}`".format( groupNum=groupNum, start=match.start(groupNum), end=match.end(groupNum), group=match.group(groupNum), ) ) start, end = match.span() count += end - start - len(match.group(1)) return count def detect_repetitions(text, debug=False): if isinstance(text, str) is False: return 0, 0, 0 text, count_non_word_char_repetition = del_non_word_char_repetition( text, debug=debug ) count_text_repetitions = detect_text_repetitions(text, debug=debug) total_repetitions = count_non_word_char_repetition + count_text_repetitions result = (count_non_word_char_repetition, count_text_repetitions, total_repetitions) if debug: print(result) return result def detect_scores( row, debug=False, answer_col="answer", ground_truth_col="ground_truth" ): newline_score, repetition_score, total_repetitions = detect_repetitions( row[answer_col], debug=debug ) if ground_truth_col: ground_truth_newline_score, ground_truth_repetition_score, _ = ( detect_repetitions(row[ground_truth_col], debug=debug) ) newline_score -= ground_truth_newline_score if newline_score < 0: newline_score = 0 repetition_score -= ground_truth_repetition_score if repetition_score < 0: repetition_score = 0 total_repetitions = newline_score + repetition_score return pd.Series([newline_score, repetition_score, total_repetitions]) def load_with_newline_and_repetition_scores(result_file, force_recalculate=False): print(f"loading result file: {result_file}") df = pd.read_csv(result_file, comment="#", on_bad_lines="warn") if ( force_recalculate or "newline_score" not in df.columns or "repetition_score" not in df.columns or "total_repetitions" not in df.columns or "nrr" not in df.columns or "rr" not in df.columns ): if ( force_recalculate or "newline_score" not in df.columns or "repetition_score" not in df.columns or "total_repetitions" not in df.columns ): df[["newline_score", "repetition_score", "total_repetitions"]] = df.apply( detect_scores, axis=1 ) df["answer_len"] = df["answer"].apply( lambda x: len(x) if isinstance(x, str) else 0 ) df["nrr"] = df.apply( lambda x: ( 1 if x["answer_len"] == 0 else 1 - (x["newline_score"] + x["repetition_score"]) / x["answer_len"] ), axis=1, ) df["rr"] = df["nrr"].apply(lambda x: 1 - x) df.to_csv(result_file, index=False) return df def replace_last(source_string, old_string, new_string): head, _sep, tail = source_string.rpartition(old_string) return head + new_string + tail def load_for_repetition_penalty( csv_result_file, repetition_penalty, force_recalculate=False ): result_file = replace_last( csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}.csv" ) return load_with_newline_and_repetition_scores( result_file, force_recalculate=force_recalculate ) def calc_adjusted_performance(f, r, l=1): n = 1 - r / l if l > 0 else 0 return f * n * n * n def calculate_adjusted_performance(row): r = row["total_repetitions"] l = row["answer_len"] adjusted_precision = calc_adjusted_performance(row["precision"], r, l) adjusted_recall = calc_adjusted_performance(row["recall"], r, l) return pd.Series([adjusted_precision, adjusted_recall]) def load_performance_df(csv_result_file, repetition_penalty): result_file = replace_last( csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}-t2_evaluated.json" ) result_file = result_file.replace("/results/", "/eval/") print(f"loading json file: {result_file}") df = pd.read_json(result_file) return df def calculate_performance_score( csv_result_file, repetition_penalty, force_recalculate=False ): result_file = replace_last( csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv" ) if os.path.exists(result_file): print(f"loading result file: {result_file}") df = load_with_newline_and_repetition_scores( result_file, force_recalculate=force_recalculate ) else: print(f"re-creating result file: {result_file}") df = pd.DataFrame() force_recalculate = True if force_recalculate or "f2" in df.columns or "f1" not in df.columns: try: perf_df = load_performance_df(csv_result_file, repetition_penalty) df.drop( columns=[ "precision", "recall", "f1", "f2", "entities_in_answer", "entities_in_question", "word_count", ], errors="ignore", inplace=True, ) df["id"] = perf_df["id"] df["question"] = perf_df["question"] df["answer"] = perf_df["pred_answer"] df["word_count"] = df["answer"].apply( lambda x: len(nltk.word_tokenize(x)) if isinstance(x, str) else 0 ) df["ground_truth"] = perf_df["ground_truth"] df["eval_gemini_1.0_pro"] = perf_df["eval_gemini_1.0_pro"] df["precision"] = perf_df["score"].apply(lambda x: x[0]) df["recall"] = perf_df["score"].apply(lambda x: x[1]) df["f1"] = perf_df["score"].apply(lambda x: x[2]) except Exception as e: print(f"\tignored error: {e}") # traceback.print_exc() df[["newline_score", "repetition_score", "total_repetitions"]] = df.apply( detect_scores, axis=1 ) df["answer_len"] = df["answer"].apply( lambda x: len(x) if isinstance(x, str) else 0 ) df[["adjusted_precision", "adjusted_recall"]] = df.apply( calculate_adjusted_performance, axis=1 ) df.to_csv(result_file, index=False) print(f"performance scores saved to result file: {result_file}") # print(f"df len: {len(df)}") return df def adjust_perf_scores_with_repetition_penalty(result, precision, recall): newline_score = [ df["newline_score"].mean() for df in result["df_list_repetition_penalty"] ] repetition_score = [ df["repetition_score"].mean() for df in result["df_list_repetition_penalty"] ] answer_len = [ df["answer_len"].mean() for df in result["df_list_repetition_penalty"] ] precision = [ calc_adjusted_performance(f, n + r, l) for f, n, r, l in zip(precision, newline_score, repetition_score, answer_len) ] recall = [ calc_adjusted_performance(f, n + r, l) for f, n, r, l in zip(recall, newline_score, repetition_score, answer_len) ] return precision, recall def plot_performance_scores( result, models=None, title="Performance", ): if models is None: models = result.keys() for model in models: print(f"model: {model}") df = result[model]["df_overall"] # Calculate the statistics precision = [ df["precision"].mean() for df in result[model]["df_list_repetition_penalty"] ] recall = [ df["recall"].mean() for df in result[model]["df_list_repetition_penalty"] ] f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)] best_f1 = max(f1) best_f1_index = f1.index(best_f1) precision, recall = adjust_perf_scores_with_repetition_penalty( result[model], precision, recall ) afrp = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)] # f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]] best_afrp = max(afrp) best_afrp_index = afrp.index(best_afrp) adjusted_precision = [ df["adjusted_precision"].mean() for df in result[model]["df_list_repetition_penalty"] ] adjusted_recall = [ df["adjusted_recall"].mean() for df in result[model]["df_list_repetition_penalty"] ] afrp2 = [ 2 * (p * r) / (p + r) for p, r in zip(adjusted_precision, adjusted_recall) ] best_afrp2 = max(afrp2) best_afrp2_index = afrp2.index(best_afrp2) repetition_penalties = list(df["repetition_penalty"]) # line plot for precision, recall, f1 plt.figure(figsize=(10, 6)) plt.axvspan( repetition_penalties[best_f1_index] - 0.01, repetition_penalties[best_f1_index] + 0.01, alpha=0.5, edgecolor="none", facecolor="blue", ) # plt.axvspan( # repetition_penalties[best_afrp2_index] - 0.01, # repetition_penalties[best_afrp2_index] + 0.01, # alpha=0.5, # edgecolor="none", # facecolor="green", # ) plt.axvspan( repetition_penalties[best_afrp_index] - 0.01, repetition_penalties[best_afrp_index] + 0.01, alpha=0.5, edgecolor="none", facecolor="orange", ) plt.plot(repetition_penalties, f1, label="F1", marker="D", color="blue") # plt.plot( # repetition_penalties, # afrp2, # label="Per-question RAP - F1", # marker="s", # color="green", # ) plt.plot( repetition_penalties, afrp, label="RAP - F1", marker="o", color="orange", ) plt.xlabel("Repetition Penalties") plt.ylabel("Score") # plt.xlim(0.99, 1.31) # y in percentage plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0)) plt.title(f"{model} {title}") plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left") plt.show() def plot_best_afrp( result, models=None, title="Models with Best RAP - F1", ref_result=None, ): # Initialize lists to store the statistics model_names = [] best_f1 = [] best_afrp = [] best_repetition_penalty = [] best_mtr = [] if models is None: models = result.keys() for model in models: print(f"model: {model}") df = result[model]["df_overall"] # Calculate the statistics precision = [ df["precision"].mean() for df in result[model]["df_list_repetition_penalty"] ] recall = [ df["recall"].mean() for df in result[model]["df_list_repetition_penalty"] ] # f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]] f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)] newline_score = [ df["newline_score"].mean() for df in result[model]["df_list_repetition_penalty"] ] # print(f"newline_score: {newline_score}") repetition_score = [ df["repetition_score"].mean() for df in result[model]["df_list_repetition_penalty"] ] # print(f"repetition_score: {repetition_score}") answer_len = [ df["answer_len"].mean() for df in result[model]["df_list_repetition_penalty"] ] afrp = [ calc_adjusted_performance(f, n + r, l) for f, n, r, l in zip(f1, newline_score, repetition_score, answer_len) ] best_afrp.append(max(afrp)) best_afrp_index = afrp.index(best_afrp[-1]) best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index]) best_f1.append(f1[best_afrp_index]) best_mtr.append( newline_score[best_afrp_index] + repetition_score[best_afrp_index] ) # print( # f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}" # ) df = result[model]["df_list_repetition_penalty"][best_afrp_index] model_names.append( f"{model} (RP={best_repetition_penalty[-1]})" ) # Add the model name to the list if ref_result is not None: print("ref_result:", ref_result) for model in ref_result.keys(): model_names.append(model) df = pd.read_csv(ref_result[model]) # df = df[df["id"].isin(wikidata_df["id"])] p = df["precision"].mean() r = df["recall"].mean() f1 = 2 * p * r / (p + r) if p + r > 0 else 0 best_f1.append(f1) best_afrp.append(f1) best_mtr.append(0) print("model_names:", model_names) # print("best_f1:", best_f1) # print("best_afrp:", best_afrp) # Create a DataFrame with the statistics data = pd.DataFrame( { "Model": model_names, "RAP - F1": best_afrp, "F1": best_f1, } ) # Melt the DataFrame to a long format data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score") # Pivot the DataFrame to a wide format data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score") # make sure the columns are following the order of the models data_pivoted = data_pivoted[model_names] # make sure three groups in the order of precision, recall, f1 data_pivoted = data_pivoted.reindex(["RAP - F1", "F1"]) # Plot the statistics plt.figure(figsize=(15, 6)) ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9) plt.title(title) plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left") # Set the rotation of the x-axis labels to 0 degrees plt.xticks(rotation=0) # Format the y-axis to display as percentage ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0)) # get the max value of the y-axis a1 = max(best_afrp) a2 = max(best_f1) max_value = max([a1, a2]) * 1.12 print("max_value:", max_value) # Set the y-axis limit up to 70% ax.set_ylim(0, max_value) # Add the values above each bar for p in ax.patches: ax.annotate( f"{p.get_height() * 100:.1f}", (p.get_x() + p.get_width() / 2.0, p.get_height()), ha="center", va="bottom", xytext=(0, 10), textcoords="offset points", rotation=90, ) plt.show() return data_pivoted, best_mtr def plot_best_performance( result, models=None, title="Models with Best F1 Score", adjusted_f1=False, ref_result=None, ): # Initialize lists to store the statistics model_names = [] best_precision = [] best_recall = [] best_f1 = [] best_repetition_penalty = [] best_mtr = [] if models is None: models = result.keys() for model in models: print(f"model: {model}") df = result[model]["df_overall"] # Calculate the statistics precision = [ df["precision"].mean() for df in result[model]["df_list_repetition_penalty"] ] recall = [ df["recall"].mean() for df in result[model]["df_list_repetition_penalty"] ] newline_score = [ df["newline_score"].mean() for df in result[model]["df_list_repetition_penalty"] ] repetition_score = [ df["repetition_score"].mean() for df in result[model]["df_list_repetition_penalty"] ] if adjusted_f1: precision, recall = adjust_perf_scores_with_repetition_penalty( result[model], precision, recall ) # f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]] f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)] best_f1.append(max(f1)) best_f1_index = f1.index(best_f1[-1]) best_repetition_penalty.append(df["repetition_penalty"][best_f1_index]) best_precision.append(precision[best_f1_index]) best_recall.append(recall[best_f1_index]) best_mtr.append(newline_score[best_f1_index] + repetition_score[best_f1_index]) print( f"best repetition penalty: {best_repetition_penalty[-1]}, best f1: {best_f1[-1]}, precision: {best_precision[-1]}, recall: {best_recall[-1]}" ) df = result[model]["df_list_repetition_penalty"][best_f1_index] model_names.append( f"{model} (RP={best_repetition_penalty[-1]})" ) # Add the model name to the list # print sum for columns: newline_score, repetition_score print( f"newline_score: {df['newline_score'].sum()}, repetition_score: {df['repetition_score'].sum()}" ) if ref_result is not None: print("ref_result:", ref_result) for model in ref_result.keys(): model_names.append(model) df = pd.read_csv(ref_result[model]) # df = df[df["id"].isin(wikidata_df["id"])] best_precision.append(df["precision"].mean()) best_recall.append(df["recall"].mean()) f1 = ( 2 * (best_precision[-1] * best_recall[-1]) / (best_precision[-1] + best_recall[-1]) ) # best_f1.append(df["f1"].mean()) best_f1.append(f1) best_mtr.append(0) # Create a DataFrame with the statistics data = ( pd.DataFrame( { "Model": model_names, "Adjusted Precision with RP": best_precision, "Adjusted Recall with RP": best_recall, "Adjusted F1 with RP": best_f1, } ) if adjusted_f1 else pd.DataFrame( { "Model": model_names, "Precision": best_precision, "Recall": best_recall, "F1": best_f1, } ) ) columns = list(data.columns) # Melt the DataFrame to a long format data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score") # Pivot the DataFrame to a wide format data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score") # make sure the columns are following the order of the models data_pivoted = data_pivoted[model_names] # make sure three groups in the order of precision, recall, f1 data_pivoted = data_pivoted.reindex(columns[1:]) # Plot the statistics plt.figure(figsize=(10, 6)) ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9) plt.title(title) plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left") # Set the rotation of the x-axis labels to 0 degrees plt.xticks(rotation=0) # Format the y-axis to display as percentage ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0)) # get the max value of the y-axis a1 = max(best_precision) a2 = max(best_recall) a3 = max(best_f1) max_value = max([a1, a2, a3]) * 1.12 print("max_value:", max_value) # Set the y-axis limit up to 70% ax.set_ylim(0, max_value) # Add the values above each bar for p in ax.patches: ax.annotate( f"{p.get_height() * 100:.1f}", (p.get_x() + p.get_width() / 2.0, p.get_height()), ha="center", va="bottom", xytext=(0, 10), textcoords="offset points", rotation=90, ) plt.show() return data_pivoted, best_mtr def plot_best_performance_ms_macro( result, models=None, title="Models with Best RAP - Performance", ref_result=None, skip_generic_prompt=False, include_adjusted_performance=True, ): # Initialize lists to store the statistics model_names = [] best_f1 = [] best_afrp = [] best_repetition_penalty = [] best_bleu1 = [] best_rougeL = [] best_mtr = [] if models is None: models = result.keys() for model in models: if skip_generic_prompt and "generic prompt" in model: continue print(f"model: {model}") df = result[model]["df_overall"] # Calculate the statistics bleu1 = [x for x in df["bleu1"]] rougeL = [x for x in df["rougeL"]] f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)] newline_score = [ df["newline_score"].mean() for df in result[model]["df_list_repetition_penalty"] ] # print(f"newline_score: {newline_score}") repetition_score = [ df["repetition_score"].mean() for df in result[model]["df_list_repetition_penalty"] ] # print(f"repetition_score: {repetition_score}") answer_len = [ df["answer_len"].mean() for df in result[model]["df_list_repetition_penalty"] ] afrp = [ calc_adjusted_performance(f, n + r, l) for f, n, r, l in zip(f1, newline_score, repetition_score, answer_len) ] best_afrp.append(max(afrp if include_adjusted_performance else f1)) best_afrp_index = ( afrp.index(best_afrp[-1]) if include_adjusted_performance else f1.index(best_afrp[-1]) ) best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index]) best_f1.append(f1[best_afrp_index]) best_bleu1.append(bleu1[best_afrp_index]) best_rougeL.append(rougeL[best_afrp_index]) best_mtr.append( newline_score[best_afrp_index] + repetition_score[best_afrp_index] ) # print( # f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}" # ) df = result[model]["df_list_repetition_penalty"][best_afrp_index] model_names.append( f"{model} (RP={best_repetition_penalty[-1]})" ) # Add the model name to the list if ref_result is not None: print("ref_result:", ref_result) for model in ref_result.keys(): model_names.append(model) df = pd.read_csv(ref_result[model], comment="#", on_bad_lines="warn") # df = df[df["id"].isin(wikidata_df["id"])] p = df["bleu1"][0] best_bleu1.append(p) r = df["rougeL"][0] best_rougeL.append(r) f1 = 2 * p * r / (p + r) if p + r > 0 else 0 best_f1.append(f1) best_afrp.append(f1) best_mtr.append(0) # print("model_names:", model_names) # print("best_f1:", best_f1) # print("best_afrp:", best_afrp) # Create a DataFrame with the statistics data = ( pd.DataFrame( { "Model": model_names, "RAP - Perf Score": best_afrp, "Overall Perf Score": best_f1, } ) if include_adjusted_performance else pd.DataFrame( { "Model": model_names, "Bleu-1": best_bleu1, "Rouge-L": best_rougeL, "Overall Perf Score": best_f1, } ) ) # Melt the DataFrame to a long format data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score") # Pivot the DataFrame to a wide format data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score") # make sure the columns are following the order of the models data_pivoted = data_pivoted[model_names] columns = list(data.columns) data_pivoted = data_pivoted.reindex(columns[1:]) # Plot the statistics plt.figure(figsize=(10, 6)) ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9) plt.title(title) plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left") # Set the rotation of the x-axis labels to 0 degrees plt.xticks(rotation=0) # Format the y-axis to display as percentage ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0)) # get the max value of the y-axis a1 = max(best_afrp) a2 = max(best_f1) a3 = max(best_bleu1) a4 = max(best_rougeL) max_value = ( max([a1, a2] if include_adjusted_performance else [a1, a2, a3, a4]) * 1.12 ) print("max_value:", max_value) # Set the y-axis limit up to 70% ax.set_ylim(0, max_value) # Add the values above each bar for p in ax.patches: ax.annotate( f"{p.get_height() * 100:.1f}", (p.get_x() + p.get_width() / 2.0, p.get_height()), ha="center", va="bottom", xytext=(0, 10), textcoords="offset points", rotation=90, ) plt.show() return data_pivoted, best_mtr all_open_source_models = [ "gemma-1.1-2b-it", "Phi-3-mini-128k-instruct", "gemma-1.1-7b-it", "Llama-2-7b-chat-hf", "Mistral-7B-Instruct-v0.2", "Meta-Llama-3-8B-Instruct", "Llama-2-13b-chat-hf", "Llama-2-70b-chat-hf", "Meta-Llama-3-70B-Instruct", ] def load_for_repetition_penalty_ms_macro( csv_result_file, repetition_penalty, force_recalculate=False ): result_file = replace_last( csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv" ) df = load_with_newline_and_repetition_scores( result_file, force_recalculate=force_recalculate ) return df # MS MACRO def plot_performance_scores_ms_macro( result, models=None, title="Performance", ): if models is None: models = result.keys() for model in models: print(f"model: {model}") df = result[model]["df_overall"] # print(result[model]["df_list_repetition_penalty"][0].describe()) # Calculate the statistics bleu1 = list(df["bleu1"]) rougeL = list(df["rougeL"]) f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)] best_f1 = max(f1) best_f1_index = f1.index(best_f1) bleu1, rougeL = adjust_perf_scores_with_repetition_penalty( result[model], bleu1, rougeL ) afrp = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)] # f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]] best_afrp = max(afrp) best_afrp_index = afrp.index(best_afrp) repetition_penalties = list(df["repetition_penalty"]) # line plot for precision, recall, f1 plt.figure(figsize=(10, 6)) plt.axvspan( repetition_penalties[best_f1_index] - 0.01, repetition_penalties[best_f1_index] + 0.01, alpha=0.5, edgecolor="none", facecolor="blue", ) plt.axvspan( repetition_penalties[best_afrp_index] - 0.01, repetition_penalties[best_afrp_index] + 0.01, alpha=0.5, edgecolor="none", facecolor="orange", ) plt.plot( repetition_penalties, f1, label="Overall Perf Score", marker="D", color="blue", ) plt.plot( repetition_penalties, afrp, label="RAP - Perf Score", marker="o", color="orange", ) plt.xlabel("Repetition Penalties") plt.ylabel("Score") # plt.xlim(0.99, 1.31) # y in percentage plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0)) plt.title(f"{model} {title}") plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left") plt.show() def plot_repetition_factors(result, groups): for group in groups: # Plot the statistics plt.figure(figsize=(10, 6)) max_value = 0 for model in result.keys(): if not group in model.lower(): continue print(f"model: {model}") df = result[model]["df_overall"] repetition_panelties = [ repetition_penalty for repetition_penalty in df["repetition_penalty"] ] mean_score = [ df["total_repetitions"].mean() for df in result[model]["df_list_repetition_penalty"] ] sns.lineplot(x=repetition_panelties, y=mean_score, label=model) new_max = max(mean_score) if new_max > max_value: max_value = new_max max_value = max_value * 1.05 # if max_value < 1.5: # max_value = 1.5 # set ylimit plt.ylim(0, max_value) # show grid plt.grid(True) plt.xlabel("Repetition Penalties") plt.ylabel("Mean Total Repetitions") plt.title("Mean Total Repetitions vs Repetition Penalties") plt.legend() plt.show() def plot_repetition_factors_by_group(result, group_filter=None): markers = ["D", "o", "s", "x"] colors = ["blue", "orange", "green", "red"] # Plot the statistics plt.figure(figsize=(10, 6)) index = 0 max_value = 0 for model in result.keys(): if group_filter is not None and group_filter not in model: continue print(f"model: {model}") df = result[model]["df_overall"] repetition_panelties = [ repetition_penalty for repetition_penalty in df["repetition_penalty"] ] # Calculate the statistics mean_score = [ df["total_repetitions"].mean() for df in result[model]["df_list_repetition_penalty"] ] if len(mean_score) != len(repetition_panelties): print( f"model: {model} has different length of repetition penalties and mean score" ) print("repetition_panelties:", len(repetition_panelties)) print("mean_score:", len(mean_score)) continue new_max = max(mean_score) if new_max > max_value: max_value = new_max sns.lineplot( x=repetition_panelties, y=mean_score, label=model, marker=markers[index], color=colors[index], ) index += 1 max_value = max_value * 1.05 # if max_value < 1.5: # max_value = 1.5 # set ylimit plt.ylim(0, max_value) max_value = 0 plt.xlabel("Repetition Penalties") plt.ylabel("Mean Total Repetitions") plt.title("Mean Total Repetitions vs Repetition Penalties") plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left") plt.show() ms_marco_csv_result_files = [ "data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_mm.csv", "data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_mm.csv", "data/results_v2/gemma-1.1-2b-it(Non-RAG)_mm.csv", "data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_mm.csv", "data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_mm.csv", "data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_mm.csv", "data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_mm.csv", "data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_mm.csv", "data/results_v2/gemma-1.1-7b-it(Non-RAG)_mm.csv", "data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_mm.csv", "data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_mm.csv", "data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_mm.csv", "data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_mm.csv", "data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_mm.csv", "data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_mm.csv", "data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_mm.csv", "data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_mm.csv", "data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_mm.csv", "data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_mm.csv", "data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_mm.csv", "data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_mm.csv", "data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_mm.csv", "data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_mm.csv", "data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_mm.csv", "data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_mm.csv", "data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_mm.csv", "data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_mm.csv", ] webqsp_csv_result_files = [ "data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_wd.csv", "data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_wd.csv", "data/results_v2/gemma-1.1-2b-it(Non-RAG)_wd.csv", "data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_wd.csv", "data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_wd.csv", "data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_wd.csv", "data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_wd.csv", "data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_wd.csv", "data/results_v2/gemma-1.1-7b-it(Non-RAG)_wd.csv", "data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_wd.csv", "data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_wd.csv", "data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_wd.csv", "data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_wd.csv", "data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_wd.csv", "data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_wd.csv", "data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_wd.csv", "data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_wd.csv", "data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_wd.csv", "data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_wd.csv", "data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_wd.csv", "data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_wd.csv", "data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_wd.csv", "data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_wd.csv", "data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_wd.csv", "data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_wd.csv", "data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_wd.csv", "data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_wd.csv", ] def calc_rap_scores(result, precision="precision", recall="recall"): newline_score = [ df["newline_score"].mean() for df in result["df_list_repetition_penalty"] ] repetition_score = [ df["repetition_score"].mean() for df in result["df_list_repetition_penalty"] ] if precision in result["df_list_repetition_penalty"][0].columns: precision = [ df[precision].mean() for df in result["df_list_repetition_penalty"] ] recall = [df[recall].mean() for df in result["df_list_repetition_penalty"]] else: precision = result["df_overall"][precision] recall = result["df_overall"][recall] f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)] nrr = [ 1 - (n + r) / s for f, n, r, s in zip( f1, newline_score, repetition_score, result["df_overall"]["answer_len"] ) ] rap = [calc_adjusted_performance(f, 1 - n) for f, n in zip(f1, nrr)] return newline_score, repetition_score, f1, rap, nrr def get_model_name(csv_result_file): parts = re.split(r"[_/]", csv_result_file) print(f"parts: {parts}") model_name = parts[3] return model_name def load_webqsp_result(csv_result_files, force_recalculate=False, save=False): result = {} for i, csv_result_file in enumerate(csv_result_files): try: df = pd.read_csv(csv_result_file) model_name = get_model_name(csv_result_file) print(f"\tmodel_name: {model_name}") dfs = [ calculate_performance_score( csv_result_file, repetition_penalty, force_recalculate=force_recalculate, ) for repetition_penalty in df["repetition_penalty"] ] answer_lens = [] for df_rpp in dfs: answer_lens.append(df_rpp["answer_len"].mean()) df["answer_len"] = answer_lens result[model_name] = { "df_overall": df, "df_list_repetition_penalty": dfs, "file": csv_result_file, } newline_score, repetition_score, perf, rap, nrr = calc_rap_scores( result[model_name] ) df["newline_score"] = newline_score df["repetition_score"] = repetition_score df["total_repetitions"] = df["newline_score"] + df["repetition_score"] df["perf"] = perf df["nrr"] = nrr df["rap"] = rap df["rr"] = df["nrr"].apply(lambda x: 1 - x) if save: df.to_csv(csv_result_file, index=False) except Exception as e: print(f"Error: {e}") traceback.print_exc() return result def load_ms_marco_result( csv_result_files, force_recalculate=False, calc_bertscore=False, save=False ): result = {} for csv_result_file in csv_result_files: try: df = pd.read_csv(csv_result_file) model_name = get_model_name(csv_result_file) print(f"\tmodel_name: {model_name}") dfs = [ load_for_repetition_penalty_ms_macro( csv_result_file, repetition_penalty, force_recalculate=force_recalculate, ) for repetition_penalty in df["repetition_penalty"] ] answer_lens = [] for df_rpp in dfs: answer_lens.append(df_rpp["answer_len"].mean()) df["answer_len"] = answer_lens col = "bert_score" if calc_bertscore else "meteor" score_unavailable = col not in df.columns if score_unavailable: save = True bert_meteor_scores = [] bert_score_references = None for df_rpp in dfs: if calc_bertscore: bert_meteor_score = 0 for i, row in df_rpp.iterrows(): answer = row["answer"] if not isinstance(answer, str): answer = "" bert_meteor_score += bert_score.compute( predictions=[answer], references=[row["ground_truth"][0]], lang="en", model_type="microsoft/deberta-large-mnli", )["f1"][0] # get average of bertscore bert_meteor_score = bert_meteor_score / len(df_rpp) print(f"bert_score: {bert_meteor_score}") else: bert_meteor_score = meteor.compute( predictions=df_rpp["answer"], references=df_rpp["ground_truth"], )["meteor"] bert_meteor_scores.append(bert_meteor_score) df[col] = bert_meteor_scores result[model_name] = { "df_overall": df, "df_list_repetition_penalty": dfs, "file": csv_result_file, } newline_score, repetition_score, perf, rap, nrr = calc_rap_scores( result[model_name], precision=col, recall=col, ) df["newline_score"] = newline_score df["repetition_score"] = repetition_score df["total_repetitions"] = df["newline_score"] + df["repetition_score"] df["perf"] = perf df["nrr"] = nrr df["rap"] = rap df["rr"] = df["nrr"].apply(lambda x: 1 - x) if save: df.to_csv(csv_result_file, index=False) except Exception as e: print("An error occurred:", e) traceback.print_exc() print(f"csv_result_file: {csv_result_file}") return result