import os import sys import torch from dotenv import find_dotenv, load_dotenv found_dotenv = find_dotenv(".env") if len(found_dotenv) == 0: found_dotenv = find_dotenv(".env.example") print(f"loading env vars from: {found_dotenv}") load_dotenv(found_dotenv, override=False) path = os.path.dirname(found_dotenv) print(f"Adding {path} to sys.path") sys.path.append(path) from llm_toolkit.llm_utils import * from llm_toolkit.logical_reasoning_utils import * model_name = os.getenv("MODEL_NAME") adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH") load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" data_path = os.getenv("LOGICAL_REASONING_DATA_PATH") results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH") use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true" using_p1 = os.getenv("USING_P1_PROMPT_TEMPLATE") == "true" test_data = os.getenv("TEST_DATA", None) using_llama_factory = os.getenv("USING_LLAMA_FACTORY") == "true" max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 16)) repetition_penalty = float(os.getenv("REPETITION_PENALTY", 1.0)) dtype = ( torch.float32 if os.getenv("USE_FLOAT32_FOR_INFERENCE") == "true" else ( torch.bfloat16 if os.getenv("USE_BF16_FOR_INFERENCE") == "true" else torch.float16 ) ) print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path) gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start_gpu_memory} GB of memory reserved.") model, tokenizer = load_model( model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path, using_llama_factory=using_llama_factory, dtype=dtype, ) gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start_gpu_memory} GB of memory reserved.") datasets = load_logical_reasoning_dataset( data_path, tokenizer=tokenizer, chinese_prompt=not use_english_datasets, using_p1=using_p1, test_data=test_data, ) if len(sys.argv) > 1: num = int(sys.argv[1]) if num > 0: print(f"--- evaluating {num} entries") datasets["test"] = datasets["test"].select(range(num)) print_row_details(datasets["test"].to_pandas(), indices=[0, -1]) print("Evaluating model: " + model_name) predictions = eval_model( model, tokenizer, datasets["test"], max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, ) gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start_gpu_memory} GB of memory reserved.") if adapter_name_or_path is not None: model_name += "/" + adapter_name_or_path.split("/")[-1] save_results( ( "answer" if test_data else f"{model_name}_{dtype}{'_4bit' if load_in_4bit else ''}{'_lf' if using_llama_factory else ''}" ), results_path, datasets["test"], predictions, debug=True, ) if not test_data: metrics = calc_metrics(datasets["test"]["label"], predictions, debug=True) print(metrics)