# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/NVlabs/VILA/tree/main/llava/wids import base64 import gzip import hashlib import io import json import math import os import os.path as osp import random import re import sqlite3 import sys import tempfile import uuid import warnings from functools import lru_cache, partial from typing import Any, BinaryIO, Dict, Optional, TypeVar, Union from urllib.parse import quote, urlparse import numpy as np import torch import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler from .wids_dl import download_and_open from .wids_lru import LRUCache from .wids_mmtar import MMIndexedTar from .wids_specs import load_dsdesc_and_resolve, urldir from .wids_tar import TarFileReader, find_index_file try: from torch.utils.data import Dataset, Sampler except ImportError: class Dataset: pass class Sampler: pass T = TypeVar("T") T_co = TypeVar("T_co", covariant=True) def compute_file_md5sum(fname: Union[str, BinaryIO], chunksize: int = 1000000) -> str: """Compute the md5sum of a file in chunks. Parameters ---------- fname : Union[str, BinaryIO] Filename or file object chunksize : int, optional Chunk size in bytes, by default 1000000 Returns ------- str MD5 sum of the file Examples -------- >>> compute_file_md5sum("test.txt") 'd41d8cd98f00b204e9800998ecf8427e' """ md5 = hashlib.md5() if isinstance(fname, str): with open(fname, "rb") as f: for chunk in iter(lambda: f.read(chunksize), b""): md5.update(chunk) else: fname.seek(0) for chunk in iter(lambda: fname.read(chunksize), b""): md5.update(chunk) return md5.hexdigest() def compute_file_md5sum(fname: Union[str, BinaryIO], chunksize: int = 1000000) -> str: """Compute the md5sum of a file in chunks.""" md5 = hashlib.md5() if isinstance(fname, str): with open(fname, "rb") as f: for chunk in iter(lambda: f.read(chunksize), b""): md5.update(chunk) else: fname.seek(0) for chunk in iter(lambda: fname.read(chunksize), b""): md5.update(chunk) return md5.hexdigest() def compute_num_samples(fname): ds = IndexedTarSamples(fname) return len(ds) def splitname(fname): """Returns the basename and extension of a filename""" assert "." in fname, "Filename must have an extension" # basename, extension = re.match(r"^((?:.*/)?.*?)(\..*)$", fname).groups() basename, extension = os.path.splitext(fname) return basename, extension # NOTE(ligeng): change to ordered mapping to more flexbile dict # TODO(ligeng): submit a PR to fix the mapping issue. def group_by_key(names): """Group the file names by key. Args: names: A list of file names. Returns: A list of lists of indices, where each sublist contains indices of files with the same key. """ groups = [] kmaps = {} for i, fname in enumerate(names): # Ignore files that are not in a subdirectory. if "." not in fname: print(f"Warning: Ignoring file {fname} (no '.')") continue if fname == ".": print(f"Warning: Ignoring the '.' file.") continue key, ext = splitname(fname) if key not in kmaps: kmaps[key] = [] kmaps[key].append(i) for k, v in kmaps.items(): groups.append(v) return groups def default_decoder(sample: Dict[str, Any], format: Optional[Union[bool, str]] = True): """A default decoder for webdataset. This handles common file extensions: .txt, .cls, .cls2, .jpg, .png, .json, .npy, .mp, .pt, .pth, .pickle, .pkl. These are the most common extensions used in webdataset. For other extensions, users can provide their own decoder. Args: sample: sample, modified in place """ sample = dict(sample) for key, stream in sample.items(): extensions = key.split(".") if len(extensions) < 1: continue extension = extensions[-1] if extension in ["gz"]: decompressed = gzip.decompress(stream.read()) stream = io.BytesIO(decompressed) if len(extensions) < 2: sample[key] = stream continue extension = extensions[-2] if key.startswith("__"): continue elif extension in ["txt", "text"]: value = stream.read() sample[key] = value.decode("utf-8") elif extension in ["cls", "cls2"]: value = stream.read() sample[key] = int(value.decode("utf-8")) elif extension in ["jpg", "png", "ppm", "pgm", "pbm", "pnm"]: if format == "PIL": import PIL.Image sample[key] = PIL.Image.open(stream) elif format == "numpy": import numpy as np sample[key] = np.asarray(PIL.Image.open(stream)) else: raise ValueError(f"Unknown format: {format}") elif extension == "json": import json value = stream.read() sample[key] = json.loads(value) elif extension == "npy": import numpy as np sample[key] = np.load(stream) elif extension == "mp": import msgpack value = stream.read() sample[key] = msgpack.unpackb(value, raw=False) elif extension in ["pt", "pth"]: import torch sample[key] = torch.load(stream) elif extension in ["pickle", "pkl"]: import pickle sample[key] = pickle.load(stream) elif extension == "mp4": # Write stream to a temporary file # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile: # tmpfile.write(stream.read()) # tmpfile_path = tmpfile.name # sample[key] = tmpfile_path sample[key] = io.BytesIO(stream.read()) return sample def update_dict_with_extend(original_dict, update_dict): for key, value in update_dict.items(): if key in original_dict and isinstance(original_dict[key], list) and isinstance(value, list): original_dict[key].extend(value) else: original_dict[key] = value open_itfs = {} class IndexedTarSamples: """A class that accesses samples in a tar file. The tar file must follow WebDataset conventions. The tar file is indexed when the IndexedTarSamples object is created. The samples are accessed by index using the __getitem__ method. The __getitem__ method returns a dictionary containing the files for the sample. The key for each file is the extension of the file name. The key "__key__" is reserved for the key of the sample (the basename of each file without the extension). For example, if the tar file contains the files "sample1.jpg" and "sample1.txt", then the sample with key "sample1" will be returned as the dictionary {"jpg": ..., "txt": ...}. """ def __init__( self, *, path=None, stream=None, md5sum=None, expected_size=None, use_mmap=True, index_file=find_index_file, ): assert path is not None or stream is not None # Create TarFileReader object to read from tar_file self.path = path stream = self.stream = stream or open(path, "rb") # verify the MD5 sum if md5sum is not None: stream.seek(0) got = compute_file_md5sum(stream) assert got == md5sum, f"MD5 sum mismatch: expected {md5sum}, got {got}" stream.seek(0) # use either the mmap or the stream based implementation # NOTE(ligeng): https://stackoverflow.com/questions/11072705/twitter-trends-api-unicodedecodeerror-utf8-codec-cant-decode-byte-0x8b-in-po # import gzip # print("convert to gzip IO stream") # stream = gzip.GzipFile(fileobj=stream) if use_mmap: self.reader = MMIndexedTar(stream) else: self.reader = TarFileReader(stream, index_file=index_file) # Get list of all files in stream all_files = self.reader.names() # Group files by key into samples self.samples = group_by_key(all_files) # print("DEBUG:", list(all_files)[:20]) # print("DEBUG:", self.samples[:20]) # check that the number of samples is correct if expected_size is not None: assert len(self) == expected_size, f"Expected {expected_size} samples, got {len(self)}" self.uuid = str(uuid.uuid4()) def close(self): self.reader.close() if not self.stream.closed: self.stream.close() def __len__(self): return len(self.samples) def __getitem__(self, idx): # Get indexes of files for the sample at index idx try: indexes = self.samples[idx] except IndexError as e: print(f"[wids-debug] curr idx: {idx}, total sample length: {len(self.samples)} {e}") raise e sample = {} key = None for i in indexes: # Get filename and data for the file at index i fname, data = self.reader.get_file(i) # Split filename into key and extension k, ext = splitname(fname) # Make sure all files in sample have same key key = key or k assert key == k sample[ext] = data # Add key to sample sample["__key__"] = key return sample def __str__(self): return f"" def __repr__(self): return str(self) def hash_localname(dldir="/tmp/_wids_cache"): os.makedirs(dldir, exist_ok=True) connection = sqlite3.connect(os.path.join(dldir, "cache.db")) cursor = connection.cursor() cursor.execute("CREATE TABLE IF NOT EXISTS cache (url TEXT PRIMARY KEY, path TEXT, checksum TEXT)") connection.commit() def f(shard): """Given a URL, return a local name for the shard.""" if shard.startswith("pipe:"): # uuencode the entire URL string hex32 = base64.urlsafe_b64encode(hashlib.sha256(shard.encode()).digest())[:32].decode() return os.path.join(dldir, "pipe__" + hex32) else: # we hash the host and directory components into a 16 character string dirname = urldir(shard) hex16 = base64.urlsafe_b64encode(hashlib.sha256(dirname.encode()).digest())[:16].decode() # the cache name is the concatenation of the hex16 string and the file name component of the URL cachename = "data__" + hex16 + "__" + os.path.basename(urlparse(shard).path) checksum = None cursor.execute( "INSERT OR REPLACE INTO cache VALUES (?, ?, ?)", (shard, cachename, checksum), ) connection.commit() return os.path.join(dldir, cachename) return f def cache_localname(cachedir): os.makedirs(cachedir, exist_ok=True) def f(shard): """Given a URL, return a local name for the shard.""" path = urlparse(shard).path fname = os.path.basename(path) return os.path.join(cachedir, fname) return f def default_localname(dldir="/tmp/_wids_cache"): os.makedirs(dldir, exist_ok=True) def f(shard): """Given a URL, return a local name for the shard.""" cachename = quote(shard, safe="+-") return os.path.join(dldir, cachename) return f class LRUShards: """A class that manages a cache of shards. The cache is a LRU cache that stores the local names of the shards as keys and the downloaded paths as values. The shards are downloaded to a directory specified by dldir. The local name of a shard is computed by the localname function, which takes the shard URL as an argument. If keep is True, the downloaded files are not deleted when they are no longer needed. """ def __init__(self, lru_size, keep=False, localname=default_localname()): self.localname = localname # the cache contains the local name as the key and the downloaded path as the value self.lru = LRUCache(lru_size, release_handler=self.release_handler) # keep statistics self.reset_stats() def reset_stats(self): self.accesses = 0 self.misses = 0 def __len__(self): return len(self.lru) def release_handler(self, key, value): value.close() def clear(self): self.lru.clear() def get_shard(self, url): assert isinstance(url, str) self.accesses += 1 if url not in self.lru: local = self.localname(url) with download_and_open(url, local) as stream: itf = IndexedTarSamples(path=local, stream=stream) self.lru[url] = itf self.misses += 1 self.last_missed = True else: self.last_missed = False return self.lru[url] def interpret_transformations(transformations): """Interpret the transformations argument. This takes care of transformations specified as string shortcuts and returns a list of callables. """ if not isinstance(transformations, list): transformations = [transformations] result = [] for transformation in transformations: if transformation == "PIL": transformation = partial(default_decoder, format="PIL") elif transformation == "numpy": transformation = partial(default_decoder, format="numpy") else: assert callable(transformation) result.append(transformation) return result def hash_dataset_name(input_string): """Compute a hash of the input string and return the first 16 characters of the hash.""" # Compute SHA256 hash of the input string hash_object = hashlib.sha256(input_string.encode()) hash_digest = hash_object.digest() # Encode the hash in base64 base64_encoded_hash = base64.urlsafe_b64encode(hash_digest) # Return the first 16 characters of the base64-encoded hash return base64_encoded_hash[:16].decode("ascii") @lru_cache(maxsize=16) def lru_json_load(fpath): with open(fpath) as fp: return json.load(fp) class ShardListDataset(Dataset[T]): """An indexable dataset based on a list of shards. The dataset is either given as a list of shards with optional options and name, or as a URL pointing to a JSON descriptor file. Datasets can reference other datasets via `source_url`. Shard references within a dataset are resolve relative to an explicitly given `base` property, or relative to the URL from which the dataset descriptor was loaded. """ def __init__( self, shards, *, cache_size=int(1e12), cache_dir=None, lru_size=10, dataset_name=None, localname=None, transformations="PIL", keep=False, base=None, options=None, ): """Create a ShardListDataset. Args: shards: a list of (filename, length) pairs or a URL pointing to a JSON descriptor file cache_size: the number of shards to keep in the cache lru_size: the number of shards to keep in the LRU cache localname: a function that maps URLs to local filenames Note that there are two caches: an on-disk directory, and an in-memory LRU cache. """ if options is None: options = {} super().__init__() # shards is a list of (filename, length) pairs. We'll need to # keep track of the lengths and cumulative lengths to know how # to map indices to shards and indices within shards. if isinstance(shards, (str, io.IOBase)): if base is None and isinstance(shards, str): shards = osp.expanduser(shards) base = urldir(shards) self.base = base self.spec = load_dsdesc_and_resolve(shards, options=options, base=base) self.shards = self.spec.get("shardlist", []) self.dataset_name = self.spec.get("name") or hash_dataset_name(str(shards)) else: raise NotImplementedError("Only support taking path/url to JSON descriptor file.") self.base = None self.spec = options self.shards = shards self.dataset_name = dataset_name or hash_dataset_name(str(shards)) self.lengths = [shard["nsamples"] for shard in self.shards] self.cum_lengths = np.cumsum(self.lengths) self.total_length = self.cum_lengths[-1] if cache_dir is not None: # when a cache dir is explicitly given, we download files into # that directory without any changes self.cache_dir = cache_dir self.localname = cache_localname(cache_dir) elif localname is not None: # when a localname function is given, we use that self.cache_dir = None self.localname = localname else: import getpass # when no cache dir or localname are given, use the cache from the environment self.cache_dir = os.environ.get("WIDS_CACHE", f"~/.cache/_wids_cache") self.cache_dir = osp.expanduser(self.cache_dir) self.localname = default_localname(self.cache_dir) self.data_info = ( f"[WebShardedList] {str(shards)}, base: {self.base,}, name: {self.spec.get('name')}, " f"nfiles: {str(len(self.shards))}" ) if True or int(os.environ.get("WIDS_VERBOSE", 0)): nbytes = sum(shard.get("filesize", 0) for shard in self.shards) nsamples = sum(shard["nsamples"] for shard in self.shards) self.data_info += f"nbytes: {str(nbytes)}, samples: {str(nsamples),}, cache: {self.cache_dir} " # print( # "[WebShardedList]", # str(shards), # "base:", # self.base, # "name:", # self.spec.get("name"), # "nfiles:", # len(self.shards), # "nbytes:", # nbytes, # "samples:", # nsamples, # "cache:", # self.cache_dir, # file=sys.stderr, # ) self.transformations = interpret_transformations(transformations) if lru_size > 200: warnings.warn("LRU size is very large; consider reducing it to avoid running out of file descriptors") self.cache = LRUShards(lru_size, localname=self.localname, keep=keep) def add_transform(self, transform): """Add a transformation to the dataset.""" self.transformations.append(transform) return self def __len__(self): """Return the total number of samples in the dataset.""" return self.total_length def get_stats(self): """Return the number of cache accesses and misses.""" return self.cache.accesses, self.cache.misses def check_cache_misses(self): """Check if the cache miss rate is too high.""" accesses, misses = self.get_stats() if accesses > 100 and misses / accesses > 0.3: # output a warning only once self.check_cache_misses = lambda: None print(f"Warning: ShardListDataset has a cache miss rate of {misses * 100.0 / accesses:.1%}%") def get_shard(self, index): """Get the shard and index within the shard corresponding to the given index.""" # Find the shard corresponding to the given index. shard_idx = np.searchsorted(self.cum_lengths, index, side="right") # Figure out which index within the shard corresponds to the # given index. if shard_idx == 0: inner_idx = index else: inner_idx = index - self.cum_lengths[shard_idx - 1] # Get the shard and return the corresponding element. desc = self.shards[shard_idx] url = desc["url"] if url.startswith(("https://", "http://", "gs://", "/", "~")): # absolute path or url path url = url else: # concat relative path if self.base is None and "base_path" not in self.spec: raise FileNotFoundError("passing a relative path in shardlist but no base found.") base_path = self.spec["base_path"] if "base_path" in self.spec else self.base url = osp.abspath(osp.join(osp.expanduser(base_path), url)) desc["url"] = url try: shard = self.cache.get_shard(url) except UnicodeDecodeError as e: print("UnicodeDecodeError:", desc) raise e return shard, inner_idx, desc def __getitem__(self, index): """Return the sample corresponding to the given index.""" shard, inner_idx, desc = self.get_shard(index) sample = shard[inner_idx] # Check if we're missing the cache too often. self.check_cache_misses() sample["__dataset__"] = desc.get("dataset") sample["__index__"] = index sample["__shard__"] = desc["url"] sample["__shardindex__"] = inner_idx # Apply transformations for transform in self.transformations: sample = transform(sample) return sample def close(self): """Close the dataset.""" self.cache.clear() class ShardListDatasetMulti(ShardListDataset): """An indexable dataset based on a list of shards. The dataset is either given as a list of shards with optional options and name, or as a URL pointing to a JSON descriptor file. Datasets can reference other datasets via `source_url`. Shard references within a dataset are resolve relative to an explicitly given `base` property, or relative to the URL from which the dataset descriptor was loaded. """ def __init__( self, shards, *, cache_size=int(1e12), cache_dir=None, lru_size=10, dataset_name=None, localname=None, transformations="PIL", keep=False, base=None, options=None, sort_data_inseq=False, num_replicas=None, ): """Create a ShardListDataset. Args: shards: a list of (filename, length) pairs or a URL pointing to a JSON descriptor file cache_size: the number of shards to keep in the cache lru_size: the number of shards to keep in the LRU cache localname: a function that maps URLs to local filenames Note that there are two caches: an on-disk directory, and an in-memory LRU cache. """ if options is None: options = {} # shards is a list of (filename, length) pairs. We'll need to # keep track of the lengths and cumulative lengths to know how # to map indices to shards and indices within shards. shards_lists = shards if isinstance(shards, list) else [shards] bases = base if isinstance(base, list) else [base] * len(shards_lists) self.spec = {} self.shards = [] self.num_per_dir = {} for base, shards in zip(bases, shards_lists): if isinstance(shards, (str, io.IOBase)): if base is None and isinstance(shards, str): shards = osp.expanduser(shards) base = urldir(shards) self.base = base _spec = load_dsdesc_and_resolve(shards, options=options, base=base) update_dict_with_extend(self.spec, _spec) self.num_per_dir[os.path.basename(os.path.dirname(shards))] = sum( [shard["nsamples"] for shard in _spec.get("shardlist", [])] ) else: raise NotImplementedError("Only support taking path/url to JSON descriptor file.") self.base = None self.spec = options self.shards = shards self.dataset_name = dataset_name or hash_dataset_name(str(shards)) if sort_data_inseq and len(self.spec.get("shardlist", [])) > 0: num_replicas = num_replicas or dist.get_world_size() self.spec["shardlist"] = split_and_recombine(self.spec["shardlist"], num_replicas) self.shards.extend(self.spec.get("shardlist", [])) self.dataset_name = self.spec.get("name") or hash_dataset_name(str(shards)) self.lengths = [shard["nsamples"] for shard in self.shards] self.cum_lengths = np.cumsum(self.lengths) self.total_length = self.cum_lengths[-1] if cache_dir is not None: # when a cache dir is explicitly given, we download files into # that directory without any changes self.cache_dir = cache_dir self.localname = cache_localname(cache_dir) elif localname is not None: # when a localname function is given, we use that self.cache_dir = None self.localname = localname else: import getpass # when no cache dir or localname are given, use the cache from the environment self.cache_dir = os.environ.get("WIDS_CACHE", f"~/.cache/_wids_cache") self.cache_dir = osp.expanduser(self.cache_dir) self.localname = default_localname(self.cache_dir) self.data_info = ( f"[WebShardedList] {str(shards)}, base: {self.base,}, name: {self.spec.get('name')}, " f"nfiles: {str(len(self.shards))}" ) if True or int(os.environ.get("WIDS_VERBOSE", 0)): nbytes = sum(shard.get("filesize", 0) for shard in self.shards) nsamples = sum(shard["nsamples"] for shard in self.shards) self.data_info += f"nbytes: {str(nbytes)}, samples: {str(nsamples),}, cache: {self.cache_dir} " self.transformations = interpret_transformations(transformations) if lru_size > 200: warnings.warn("LRU size is very large; consider reducing it to avoid running out of file descriptors") self.cache = LRUShards(lru_size, localname=self.localname, keep=keep) def split_and_recombine(lst, n): from collections import OrderedDict def extract_prefix(i): return i["url"].split("/")[-2] unique_parts = list(OrderedDict((extract_prefix(item), None) for item in lst).keys()) split_dict = {part: [] for part in unique_parts} for part in unique_parts: part_list = [item for item in lst if extract_prefix(item) == part] chunk_size = max(1, len(part_list) // n) # 确保 chunk_size 至少为 1 chunks = [part_list[i * chunk_size : (i + 1) * chunk_size] for i in range(n)] # 处理最后一个 chunk,如果数量不均匀,将剩余的元素添加到最后一个 chunk if len(part_list) % n != 0: chunks[-1].extend(part_list[n * chunk_size :]) split_dict[part] = chunks recombined_list = [] for i in range(n): for part in unique_parts: recombined_list.extend(split_dict[part][i]) return recombined_list def lengths_to_ranges(lengths): """Convert a list of lengths to a list of ranges.""" ranges = [] start = 0 for length in lengths: ranges.append((start, start + length)) start += length return ranges def intersect_range(a, b): """Return the intersection of the two half-open integer intervals.""" result = max(a[0], b[0]), min(a[1], b[1]) if result[0] >= result[1]: return None return result def intersect_ranges(rangelist, r): """Return the intersection of the half-open integer interval r with the list of half-open integer intervals.""" result = [] for a in rangelist: x = intersect_range(a, r) if x is not None: result.append(x) return result def iterate_ranges(ranges, rng, indexshuffle=True, shardshuffle=True): """Iterate over the ranges in a random order.""" shard_indexes = list(range(len(ranges))) if shardshuffle: rng.shuffle(shard_indexes) for i in shard_indexes: lo, hi = ranges[i] sample_indexes = list(range(lo, hi)) if indexshuffle: rng.shuffle(sample_indexes) yield from sample_indexes class ShardListSampler(Sampler): """A sampler that samples consistent with a ShardListDataset. This sampler is used to sample from a ShardListDataset in a way that preserves locality. This returns a permutation of the indexes by shard, then a permutation of indexes within each shard. This ensures that the data is accessed in a way that preserves locality. Note that how this ends up splitting data between multiple workers ends up on the details of the DataLoader. Generally, it will likely load samples from the same shard in each worker. Other more sophisticated shard-aware samplers are possible and will likely be added. """ def __init__(self, dataset, *, lengths=None, seed=0, shufflefirst=False): if lengths is None: lengths = list(dataset.lengths) self.ranges = lengths_to_ranges(lengths) self.seed = seed self.shufflefirst = shufflefirst self.epoch = 0 def __iter__(self): self.rng = random.Random(self.seed + 1289738273 * self.epoch) shardshuffle = self.shufflefirst or self.epoch > 0 yield from iterate_ranges(self.ranges, self.rng, shardshuffle=shardshuffle) self.epoch += 1 ShardedSampler = ShardListSampler class ChunkedSampler(Sampler): """A sampler that samples in chunks and then shuffles the samples within each chunk. This preserves locality of reference while still shuffling the data. """ def __init__( self, dataset, *, num_samples=None, chunksize=2000, seed=0, shuffle=False, shufflefirst=False, ): if isinstance(num_samples, int): lo, hi = 0, num_samples elif num_samples is None: lo, hi = 0, len(dataset) else: lo, hi = num_samples self.ranges = [(i, min(i + chunksize, hi)) for i in range(lo, hi, chunksize)] self.seed = seed self.shuffle = shuffle self.shufflefirst = shufflefirst self.epoch = 0 def set_epoch(self, epoch): self.epoch = epoch def __iter__(self): self.rng = random.Random(self.seed + 1289738273 * self.epoch) shardshuffle = self.shufflefirst or self.epoch > 0 yield from iterate_ranges( self.ranges, self.rng, indexshuffle=self.shuffle, shardshuffle=(self.shuffle and shardshuffle), ) self.epoch += 1 def __len__(self): return len(self.ranges) def DistributedChunkedSampler( dataset: Dataset, *, num_replicas: Optional[int] = None, num_samples: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True, shufflefirst: bool = False, seed: int = 0, drop_last: bool = None, chunksize: int = 1000000, ) -> ChunkedSampler: """Return a ChunkedSampler for the current worker in distributed training. Reverts to a simple ChunkedSampler if not running in distributed mode. Since the split among workers takes place before the chunk shuffle, workers end up with a fixed set of shards they need to download. The more workers, the fewer shards are used by each worker. """ if drop_last is not None: warnings.warn("DistributedChunkedSampler does not support drop_last, thus it will be ignored") if not dist.is_initialized(): warnings.warn("DistributedChunkedSampler is called without distributed initialized; assuming single process") num_replicas = 1 rank = 0 else: num_replicas = num_replicas or dist.get_world_size() rank = rank or dist.get_rank() assert rank >= 0 and rank < num_replicas num_samples = num_samples or len(dataset) worker_chunk = (num_samples + num_replicas - 1) // num_replicas worker_start = rank * worker_chunk worker_end = min(worker_start + worker_chunk, num_samples) return ChunkedSampler( dataset, num_samples=(worker_start, worker_end), chunksize=chunksize, seed=seed, shuffle=shuffle, shufflefirst=shufflefirst, ) class DistributedRangedSampler(Sampler): """A sampler that samples in chunks and then shuffles the samples within each chunk. This preserves locality of reference while still shuffling the data. """ def __init__( self, dataset: Dataset, num_replicas: Optional[int] = None, num_samples: Optional[int] = None, rank: Optional[int] = None, drop_last: bool = None, ): if drop_last is not None: warnings.warn("DistributedChunkedSampler does not support drop_last, thus it will be ignored") if not dist.is_initialized(): warnings.warn( "DistributedChunkedSampler is called without distributed initialized; assuming single process" ) num_replicas = 1 rank = 0 else: num_replicas = num_replicas or dist.get_world_size() rank = rank or dist.get_rank() assert rank >= 0 and rank < num_replicas num_samples = num_samples or len(dataset) self.worker_chunk = num_samples // num_replicas self.worker_start = rank * self.worker_chunk self.worker_end = min((rank + 1) * self.worker_chunk, num_samples) self.ranges = range(self.worker_start, self.worker_end) self.epoch = 0 self.step_start = 0 def set_epoch(self, epoch): self.epoch = epoch def __len__(self): return len(self.ranges) def set_start(self, start): self.step_start = start def __iter__(self): yield from self.ranges[self.step_start :] self.epoch += 1 class DistributedLocalSampler(DistributedSampler): def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] else: indices = list(range(len(self.dataset))) # type: ignore[arg-type] if not self.drop_last: # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] else: # remove tail of data to make it evenly divisible. indices = indices[: self.total_size] assert len(indices) == self.total_size # subsample # indices = indices[self.rank:self.total_size:self.num_replicas] chunk_size = self.total_size // self.num_replicas begin_idx = chunk_size * self.rank stop_idx = chunk_size * (self.rank + 1) indices = indices[begin_idx:stop_idx] # print("[SamplerIndices: ]", indices) assert len(indices) == self.num_samples return iter(indices)