Spaces:
Running
Running
new database added- med-gemini
Browse files- app.py +435 -435
- medqa_db.zip +3 -0
app.py
CHANGED
|
@@ -1,436 +1,436 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import json
|
| 3 |
-
import zipfile
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
import pandas as pd
|
| 6 |
-
from typing import Dict, List, Tuple
|
| 7 |
-
import random
|
| 8 |
-
|
| 9 |
-
class MedQADatabase:
|
| 10 |
-
"""Handler for MedQA and Med-Gemini databases"""
|
| 11 |
-
|
| 12 |
-
def __init__(self, zip_path="medqa_databases.zip"):
|
| 13 |
-
self.data = {
|
| 14 |
-
'medgemini': [],
|
| 15 |
-
'medqa_train': [],
|
| 16 |
-
'medqa_dev': [],
|
| 17 |
-
'medqa_test': []
|
| 18 |
-
}
|
| 19 |
-
self.load_databases(zip_path)
|
| 20 |
-
|
| 21 |
-
def load_databases(self, zip_path):
|
| 22 |
-
"""Load all databases from the ZIP file"""
|
| 23 |
-
print("π¦ Loading databases from ZIP...")
|
| 24 |
-
|
| 25 |
-
try:
|
| 26 |
-
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 27 |
-
# Extract to temporary directory
|
| 28 |
-
zip_ref.extractall('temp_data')
|
| 29 |
-
|
| 30 |
-
# Load Med-Gemini
|
| 31 |
-
medgemini_path = Path('temp_data/medqa_databases/med_gemini/medqa_relabelling.json')
|
| 32 |
-
if medgemini_path.exists():
|
| 33 |
-
with open(medgemini_path, 'r', encoding='utf-8') as f:
|
| 34 |
-
self.data['medgemini'] = json.load(f)
|
| 35 |
-
print(f"β
Loaded {len(self.data['medgemini'])} Med-Gemini questions")
|
| 36 |
-
|
| 37 |
-
# Load MedQA splits
|
| 38 |
-
medqa_base = Path('temp_data/medqa_databases/medqa_original')
|
| 39 |
-
for split in ['train', 'dev', 'test']:
|
| 40 |
-
split_path = medqa_base / f"{split}.json"
|
| 41 |
-
if split_path.exists():
|
| 42 |
-
with open(split_path, 'r', encoding='utf-8') as f:
|
| 43 |
-
self.data[f'medqa_{split}'] = json.load(f)
|
| 44 |
-
print(f"β
Loaded {len(self.data[f'medqa_{split}'])} MedQA {split} questions")
|
| 45 |
-
|
| 46 |
-
except Exception as e:
|
| 47 |
-
print(f"β Error loading databases: {e}")
|
| 48 |
-
raise
|
| 49 |
-
|
| 50 |
-
def get_stats(self) -> str:
|
| 51 |
-
"""Get database statistics"""
|
| 52 |
-
stats = "## π Database Statistics\n\n"
|
| 53 |
-
stats += f"**Med-Gemini**: {len(self.data['medgemini']):,} questions\n\n"
|
| 54 |
-
stats += f"**MedQA Original**:\n"
|
| 55 |
-
stats += f"- Training: {len(self.data['medqa_train']):,} questions\n"
|
| 56 |
-
stats += f"- Development: {len(self.data['medqa_dev']):,} questions\n"
|
| 57 |
-
stats += f"- Test: {len(self.data['medqa_test']):,} questions\n"
|
| 58 |
-
stats += f"- **Total**: {sum(len(self.data[f'medqa_{s}']) for s in ['train', 'dev', 'test']):,} questions\n\n"
|
| 59 |
-
stats += f"**Grand Total**: {sum(len(v) for v in self.data.values()):,} questions"
|
| 60 |
-
return stats
|
| 61 |
-
|
| 62 |
-
def get_question(self, dataset: str, index: int) -> Dict:
|
| 63 |
-
"""Get a specific question from a dataset"""
|
| 64 |
-
try:
|
| 65 |
-
return self.data[dataset][index]
|
| 66 |
-
except (KeyError, IndexError):
|
| 67 |
-
return None
|
| 68 |
-
|
| 69 |
-
def search_questions(self, query: str, dataset: str = 'all', max_results: int = 50) -> List[Tuple[str, int, str]]:
|
| 70 |
-
"""Search questions by keyword"""
|
| 71 |
-
results = []
|
| 72 |
-
query_lower = query.lower()
|
| 73 |
-
|
| 74 |
-
datasets_to_search = list(self.data.keys()) if dataset == 'all' else [dataset]
|
| 75 |
-
|
| 76 |
-
for ds in datasets_to_search:
|
| 77 |
-
for idx, q in enumerate(self.data[ds]):
|
| 78 |
-
# Search in question text
|
| 79 |
-
question_text = q.get('question', q.get('Question', ''))
|
| 80 |
-
if query_lower in question_text.lower():
|
| 81 |
-
preview = question_text[:100] + "..." if len(question_text) > 100 else question_text
|
| 82 |
-
results.append((ds, idx, preview))
|
| 83 |
-
|
| 84 |
-
if len(results) >= max_results:
|
| 85 |
-
return results
|
| 86 |
-
|
| 87 |
-
return results
|
| 88 |
-
|
| 89 |
-
# Initialize database
|
| 90 |
-
print("π Initializing MedQA Explorer...")
|
| 91 |
-
db = MedQADatabase()
|
| 92 |
-
|
| 93 |
-
# ============================================================================
|
| 94 |
-
# GRADIO INTERFACE FUNCTIONS
|
| 95 |
-
# ============================================================================
|
| 96 |
-
|
| 97 |
-
def format_question_display(question_data: Dict, dataset: str) -> str:
|
| 98 |
-
"""Format question data for display"""
|
| 99 |
-
|
| 100 |
-
if not question_data:
|
| 101 |
-
return "β Question not found"
|
| 102 |
-
|
| 103 |
-
# Handle different data formats
|
| 104 |
-
if dataset == 'medgemini':
|
| 105 |
-
return format_medgemini_question(question_data)
|
| 106 |
-
else:
|
| 107 |
-
return format_medqa_question(question_data)
|
| 108 |
-
|
| 109 |
-
def format_medgemini_question(q: Dict) -> str:
|
| 110 |
-
"""Format Med-Gemini question"""
|
| 111 |
-
html = f"""
|
| 112 |
-
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
| 113 |
-
<h2 style="color: white; margin: 0;">π¬ Med-Gemini Question</h2>
|
| 114 |
-
</div>
|
| 115 |
-
|
| 116 |
-
<div style="background: #f8f9fa; padding: 20px; border-radius: 8px; margin-bottom: 20px;">
|
| 117 |
-
<h3>π Question</h3>
|
| 118 |
-
<p style="font-size: 16px; line-height: 1.6;">{q.get('question', 'N/A')}</p>
|
| 119 |
-
</div>
|
| 120 |
-
|
| 121 |
-
<div style="background: #fff; padding: 20px; border-radius: 8px; margin-bottom: 20px; border: 2px solid #e0e0e0;">
|
| 122 |
-
<h3>π€ Answer Options</h3>
|
| 123 |
-
"""
|
| 124 |
-
|
| 125 |
-
# Display options
|
| 126 |
-
options = q.get('options', {})
|
| 127 |
-
correct_answer = q.get('answer_idx', 'N/A')
|
| 128 |
-
|
| 129 |
-
option_labels = ['A', 'B', 'C', 'D', 'E']
|
| 130 |
-
for label in option_labels:
|
| 131 |
-
option_key = f'opa' if label == 'A' else f'op{label.lower()}'
|
| 132 |
-
if option_key in options:
|
| 133 |
-
is_correct = (label == correct_answer)
|
| 134 |
-
color = '#d4edda' if is_correct else '#fff'
|
| 135 |
-
icon = 'β
' if is_correct else 'β'
|
| 136 |
-
|
| 137 |
-
html += f"""
|
| 138 |
-
<div style="background: {color}; padding: 12px; margin: 8px 0; border-radius: 5px; border: 1px solid #ccc;">
|
| 139 |
-
{icon} <strong>{label}.</strong> {options[option_key]}
|
| 140 |
-
</div>
|
| 141 |
-
"""
|
| 142 |
-
|
| 143 |
-
html += "</div>"
|
| 144 |
-
|
| 145 |
-
# Show correct answer
|
| 146 |
-
html += f"""
|
| 147 |
-
<div style="background: #d4edda; padding: 15px; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid #28a745;">
|
| 148 |
-
<h3 style="margin-top: 0;">β
Correct Answer</h3>
|
| 149 |
-
<p style="font-size: 18px; font-weight: bold; margin: 0;">{correct_answer}</p>
|
| 150 |
-
</div>
|
| 151 |
-
"""
|
| 152 |
-
|
| 153 |
-
# Show explanation if available
|
| 154 |
-
explanation = q.get('explanation', q.get('Explanation', ''))
|
| 155 |
-
if explanation:
|
| 156 |
-
html += f"""
|
| 157 |
-
<div style="background: #e7f3ff; padding: 20px; border-radius: 8px; border-left: 4px solid #2196F3;">
|
| 158 |
-
<h3 style="margin-top: 0;">π‘ Explanation</h3>
|
| 159 |
-
<p style="line-height: 1.6;">{explanation}</p>
|
| 160 |
-
</div>
|
| 161 |
-
"""
|
| 162 |
-
|
| 163 |
-
return html
|
| 164 |
-
|
| 165 |
-
def format_medqa_question(q: Dict) -> str:
|
| 166 |
-
"""Format MedQA original question"""
|
| 167 |
-
html = f"""
|
| 168 |
-
<div style="background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
| 169 |
-
<h2 style="color: white; margin: 0;">π MedQA USMLE Question</h2>
|
| 170 |
-
</div>
|
| 171 |
-
|
| 172 |
-
<div style="background: #f8f9fa; padding: 20px; border-radius: 8px; margin-bottom: 20px;">
|
| 173 |
-
<h3>π Question</h3>
|
| 174 |
-
<p style="font-size: 16px; line-height: 1.6;">{q.get('question', 'N/A')}</p>
|
| 175 |
-
</div>
|
| 176 |
-
|
| 177 |
-
<div style="background: #fff; padding: 20px; border-radius: 8px; margin-bottom: 20px; border: 2px solid #e0e0e0;">
|
| 178 |
-
<h3>π€ Answer Options</h3>
|
| 179 |
-
"""
|
| 180 |
-
|
| 181 |
-
# Display options
|
| 182 |
-
options = q.get('options', {})
|
| 183 |
-
correct_answer = q.get('answer_idx', 'N/A')
|
| 184 |
-
|
| 185 |
-
for key, value in options.items():
|
| 186 |
-
label = key.replace('op', '').upper() if key.startswith('op') else key
|
| 187 |
-
is_correct = (label == correct_answer)
|
| 188 |
-
color = '#d4edda' if is_correct else '#fff'
|
| 189 |
-
icon = 'β
' if is_correct else 'β'
|
| 190 |
-
|
| 191 |
-
html += f"""
|
| 192 |
-
<div style="background: {color}; padding: 12px; margin: 8px 0; border-radius: 5px; border: 1px solid #ccc;">
|
| 193 |
-
{icon} <strong>{label}.</strong> {value}
|
| 194 |
-
</div>
|
| 195 |
-
"""
|
| 196 |
-
|
| 197 |
-
html += "</div>"
|
| 198 |
-
|
| 199 |
-
# Show correct answer
|
| 200 |
-
html += f"""
|
| 201 |
-
<div style="background: #d4edda; padding: 15px; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid #28a745;">
|
| 202 |
-
<h3 style="margin-top: 0;">β
Correct Answer</h3>
|
| 203 |
-
<p style="font-size: 18px; font-weight: bold; margin: 0;">{correct_answer}</p>
|
| 204 |
-
</div>
|
| 205 |
-
"""
|
| 206 |
-
|
| 207 |
-
# Show metamap if available
|
| 208 |
-
metamap = q.get('metamap_phrases')
|
| 209 |
-
if metamap:
|
| 210 |
-
html += f"""
|
| 211 |
-
<div style="background: #fff3cd; padding: 15px; border-radius: 8px; border-left: 4px solid #ffc107;">
|
| 212 |
-
<h3 style="margin-top: 0;">π₯ Medical Concepts (MetaMap)</h3>
|
| 213 |
-
<p style="line-height: 1.6;">{', '.join(metamap)}</p>
|
| 214 |
-
</div>
|
| 215 |
-
"""
|
| 216 |
-
|
| 217 |
-
return html
|
| 218 |
-
|
| 219 |
-
def browse_questions(dataset: str, index: int) -> Tuple[str, str]:
|
| 220 |
-
"""Browse questions by index"""
|
| 221 |
-
total = len(db.data.get(dataset, []))
|
| 222 |
-
|
| 223 |
-
if total == 0:
|
| 224 |
-
return "β No questions in this dataset", f"Dataset: {dataset} (empty)"
|
| 225 |
-
|
| 226 |
-
# Clamp index to valid range
|
| 227 |
-
index = max(0, min(index, total - 1))
|
| 228 |
-
|
| 229 |
-
question = db.get_question(dataset, index)
|
| 230 |
-
html = format_question_display(question, dataset)
|
| 231 |
-
info = f"π Question {index + 1} of {total} | Dataset: {dataset}"
|
| 232 |
-
|
| 233 |
-
return html, info
|
| 234 |
-
|
| 235 |
-
def random_question(dataset: str) -> Tuple[str, str, int]:
|
| 236 |
-
"""Get a random question"""
|
| 237 |
-
total = len(db.data.get(dataset, []))
|
| 238 |
-
|
| 239 |
-
if total == 0:
|
| 240 |
-
return "β No questions in this dataset", f"Dataset: {dataset} (empty)", 0
|
| 241 |
-
|
| 242 |
-
index = random.randint(0, total - 1)
|
| 243 |
-
question = db.get_question(dataset, index)
|
| 244 |
-
html = format_question_display(question, dataset)
|
| 245 |
-
info = f"π² Random Question {index + 1} of {total} | Dataset: {dataset}"
|
| 246 |
-
|
| 247 |
-
return html, info, index
|
| 248 |
-
|
| 249 |
-
def search_interface(query: str, dataset: str) -> str:
|
| 250 |
-
"""Search interface"""
|
| 251 |
-
if not query.strip():
|
| 252 |
-
return "π‘ Enter a search query to find questions"
|
| 253 |
-
|
| 254 |
-
results = db.search_questions(query, dataset)
|
| 255 |
-
|
| 256 |
-
if not results:
|
| 257 |
-
return f"β No results found for '{query}' in {dataset}"
|
| 258 |
-
|
| 259 |
-
html = f"""
|
| 260 |
-
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
| 261 |
-
<h2 style="color: white; margin: 0;">π Search Results: "{query}"</h2>
|
| 262 |
-
<p style="color: white; margin: 5px 0 0 0;">Found {len(results)} results in {dataset}</p>
|
| 263 |
-
</div>
|
| 264 |
-
"""
|
| 265 |
-
|
| 266 |
-
for ds, idx, preview in results[:20]: # Show top 20
|
| 267 |
-
dataset_name = ds.replace('_', ' ').title()
|
| 268 |
-
html += f"""
|
| 269 |
-
<div style="background: #fff; padding: 15px; margin: 10px 0; border-radius: 8px; border-left: 4px solid #667eea;">
|
| 270 |
-
<p style="margin: 0; color: #666; font-size: 12px;"><strong>{dataset_name}</strong> - Question #{idx + 1}</p>
|
| 271 |
-
<p style="margin: 5px 0 0 0;">{preview}</p>
|
| 272 |
-
</div>
|
| 273 |
-
"""
|
| 274 |
-
|
| 275 |
-
if len(results) > 20:
|
| 276 |
-
html += f"<p>... and {len(results) - 20} more results</p>"
|
| 277 |
-
|
| 278 |
-
return html
|
| 279 |
-
|
| 280 |
-
# ============================================================================
|
| 281 |
-
# GRADIO APP
|
| 282 |
-
# ============================================================================
|
| 283 |
-
|
| 284 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Database Explorer") as app:
|
| 285 |
-
|
| 286 |
-
gr.Markdown("""
|
| 287 |
-
# π₯ MedQA Database Explorer
|
| 288 |
-
|
| 289 |
-
Explore medical question-answering databases including **Med-Gemini** and **MedQA USMLE**.
|
| 290 |
-
""")
|
| 291 |
-
|
| 292 |
-
# Statistics
|
| 293 |
-
with gr.Accordion("π Database Statistics", open=False):
|
| 294 |
-
gr.Markdown(db.get_stats())
|
| 295 |
-
|
| 296 |
-
# Main interface
|
| 297 |
-
with gr.Tabs():
|
| 298 |
-
|
| 299 |
-
# Browse Tab
|
| 300 |
-
with gr.Tab("π Browse Questions"):
|
| 301 |
-
with gr.Row():
|
| 302 |
-
with gr.Column(scale=1):
|
| 303 |
-
dataset_dropdown = gr.Dropdown(
|
| 304 |
-
choices=['medgemini', 'medqa_train', 'medqa_dev', 'medqa_test'],
|
| 305 |
-
value='medgemini',
|
| 306 |
-
label="Select Database"
|
| 307 |
-
)
|
| 308 |
-
|
| 309 |
-
question_slider = gr.Slider(
|
| 310 |
-
minimum=0,
|
| 311 |
-
maximum=len(db.data['medgemini']) - 1,
|
| 312 |
-
value=0,
|
| 313 |
-
step=1,
|
| 314 |
-
label="Question Number"
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
with gr.Row():
|
| 318 |
-
prev_btn = gr.Button("β¬
οΈ Previous", size="sm")
|
| 319 |
-
random_btn = gr.Button("π² Random", size="sm", variant="primary")
|
| 320 |
-
next_btn = gr.Button("Next β‘οΈ", size="sm")
|
| 321 |
-
|
| 322 |
-
info_text = gr.Textbox(label="Info", interactive=False)
|
| 323 |
-
|
| 324 |
-
with gr.Column(scale=2):
|
| 325 |
-
question_display = gr.HTML()
|
| 326 |
-
|
| 327 |
-
# Update slider max when dataset changes
|
| 328 |
-
def update_slider(dataset):
|
| 329 |
-
max_val = len(db.data.get(dataset, [])) - 1
|
| 330 |
-
return gr.Slider(maximum=max_val, value=0)
|
| 331 |
-
|
| 332 |
-
dataset_dropdown.change(
|
| 333 |
-
fn=update_slider,
|
| 334 |
-
inputs=[dataset_dropdown],
|
| 335 |
-
outputs=[question_slider]
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
# Browse functions
|
| 339 |
-
def show_question(dataset, index):
|
| 340 |
-
return browse_questions(dataset, int(index))
|
| 341 |
-
|
| 342 |
-
question_slider.change(
|
| 343 |
-
fn=show_question,
|
| 344 |
-
inputs=[dataset_dropdown, question_slider],
|
| 345 |
-
outputs=[question_display, info_text]
|
| 346 |
-
)
|
| 347 |
-
|
| 348 |
-
dataset_dropdown.change(
|
| 349 |
-
fn=show_question,
|
| 350 |
-
inputs=[dataset_dropdown, question_slider],
|
| 351 |
-
outputs=[question_display, info_text]
|
| 352 |
-
)
|
| 353 |
-
|
| 354 |
-
# Navigation buttons
|
| 355 |
-
def prev_question(dataset, index):
|
| 356 |
-
new_index = max(0, int(index) - 1)
|
| 357 |
-
html, info = browse_questions(dataset, new_index)
|
| 358 |
-
return html, info, new_index
|
| 359 |
-
|
| 360 |
-
def next_question(dataset, index):
|
| 361 |
-
max_idx = len(db.data.get(dataset, [])) - 1
|
| 362 |
-
new_index = min(max_idx, int(index) + 1)
|
| 363 |
-
html, info = browse_questions(dataset, new_index)
|
| 364 |
-
return html, info, new_index
|
| 365 |
-
|
| 366 |
-
prev_btn.click(
|
| 367 |
-
fn=prev_question,
|
| 368 |
-
inputs=[dataset_dropdown, question_slider],
|
| 369 |
-
outputs=[question_display, info_text, question_slider]
|
| 370 |
-
)
|
| 371 |
-
|
| 372 |
-
next_btn.click(
|
| 373 |
-
fn=next_question,
|
| 374 |
-
inputs=[dataset_dropdown, question_slider],
|
| 375 |
-
outputs=[question_display, info_text, question_slider]
|
| 376 |
-
)
|
| 377 |
-
|
| 378 |
-
random_btn.click(
|
| 379 |
-
fn=random_question,
|
| 380 |
-
inputs=[dataset_dropdown],
|
| 381 |
-
outputs=[question_display, info_text, question_slider]
|
| 382 |
-
)
|
| 383 |
-
|
| 384 |
-
# Load first question on start
|
| 385 |
-
app.load(
|
| 386 |
-
fn=show_question,
|
| 387 |
-
inputs=[dataset_dropdown, question_slider],
|
| 388 |
-
outputs=[question_display, info_text]
|
| 389 |
-
)
|
| 390 |
-
|
| 391 |
-
# Search Tab
|
| 392 |
-
with gr.Tab("π Search"):
|
| 393 |
-
with gr.Row():
|
| 394 |
-
search_query = gr.Textbox(
|
| 395 |
-
label="Search Query",
|
| 396 |
-
placeholder="Enter keywords (e.g., 'diabetes', 'heart failure', 'treatment')...",
|
| 397 |
-
scale=3
|
| 398 |
-
)
|
| 399 |
-
search_dataset = gr.Dropdown(
|
| 400 |
-
choices=['all', 'medgemini', 'medqa_train', 'medqa_dev', 'medqa_test'],
|
| 401 |
-
value='all',
|
| 402 |
-
label="Search In",
|
| 403 |
-
scale=1
|
| 404 |
-
)
|
| 405 |
-
|
| 406 |
-
search_btn = gr.Button("π Search", variant="primary")
|
| 407 |
-
search_results = gr.HTML()
|
| 408 |
-
|
| 409 |
-
search_btn.click(
|
| 410 |
-
fn=search_interface,
|
| 411 |
-
inputs=[search_query, search_dataset],
|
| 412 |
-
outputs=[search_results]
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
-
# Also search on Enter key
|
| 416 |
-
search_query.submit(
|
| 417 |
-
fn=search_interface,
|
| 418 |
-
inputs=[search_query, search_dataset],
|
| 419 |
-
outputs=[search_results]
|
| 420 |
-
)
|
| 421 |
-
|
| 422 |
-
gr.Markdown("""
|
| 423 |
-
---
|
| 424 |
-
### π About the Databases
|
| 425 |
-
|
| 426 |
-
**Med-Gemini**: Expert-relabeled medical questions with detailed explanations from Google's Med-Gemini project.
|
| 427 |
-
|
| 428 |
-
**MedQA**: Original USMLE-style medical questions from the MedQA dataset.
|
| 429 |
-
|
| 430 |
-
### π Sources
|
| 431 |
-
- [Med-Gemini Paper](https://arxiv.org/abs/2404.18416)
|
| 432 |
-
- [MedQA Dataset](https://github.com/jind11/MedQA)
|
| 433 |
-
""")
|
| 434 |
-
|
| 435 |
-
if __name__ == "__main__":
|
| 436 |
app.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import zipfile
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from typing import Dict, List, Tuple
|
| 7 |
+
import random
|
| 8 |
+
|
| 9 |
+
class MedQADatabase:
|
| 10 |
+
"""Handler for MedQA and Med-Gemini databases"""
|
| 11 |
+
|
| 12 |
+
def __init__(self, zip_path="medqa_databases.zip"):
|
| 13 |
+
self.data = {
|
| 14 |
+
'medgemini': [],
|
| 15 |
+
'medqa_train': [],
|
| 16 |
+
'medqa_dev': [],
|
| 17 |
+
'medqa_test': []
|
| 18 |
+
}
|
| 19 |
+
self.load_databases(zip_path)
|
| 20 |
+
|
| 21 |
+
def load_databases(self, zip_path):
|
| 22 |
+
"""Load all databases from the ZIP file"""
|
| 23 |
+
print("π¦ Loading databases from ZIP...")
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 27 |
+
# Extract to temporary directory
|
| 28 |
+
zip_ref.extractall('temp_data')
|
| 29 |
+
|
| 30 |
+
# Load Med-Gemini
|
| 31 |
+
medgemini_path = Path('temp_data/medqa_databases/med_gemini/medqa_relabelling.json')
|
| 32 |
+
if medgemini_path.exists():
|
| 33 |
+
with open(medgemini_path, 'r', encoding='utf-8') as f:
|
| 34 |
+
self.data['medgemini'] = json.load(f)
|
| 35 |
+
print(f"β
Loaded {len(self.data['medgemini'])} Med-Gemini questions")
|
| 36 |
+
|
| 37 |
+
# Load MedQA splits
|
| 38 |
+
medqa_base = Path('temp_data/medqa_databases/medqa_original')
|
| 39 |
+
for split in ['train', 'dev', 'test']:
|
| 40 |
+
split_path = medqa_base / f"{split}.json"
|
| 41 |
+
if split_path.exists():
|
| 42 |
+
with open(split_path, 'r', encoding='utf-8') as f:
|
| 43 |
+
self.data[f'medqa_{split}'] = json.load(f)
|
| 44 |
+
print(f"β
Loaded {len(self.data[f'medqa_{split}'])} MedQA {split} questions")
|
| 45 |
+
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"β Error loading databases: {e}")
|
| 48 |
+
raise
|
| 49 |
+
|
| 50 |
+
def get_stats(self) -> str:
|
| 51 |
+
"""Get database statistics"""
|
| 52 |
+
stats = "## π Database Statistics\n\n"
|
| 53 |
+
stats += f"**Med-Gemini**: {len(self.data['medgemini']):,} questions\n\n"
|
| 54 |
+
stats += f"**MedQA Original**:\n"
|
| 55 |
+
stats += f"- Training: {len(self.data['medqa_train']):,} questions\n"
|
| 56 |
+
stats += f"- Development: {len(self.data['medqa_dev']):,} questions\n"
|
| 57 |
+
stats += f"- Test: {len(self.data['medqa_test']):,} questions\n"
|
| 58 |
+
stats += f"- **Total**: {sum(len(self.data[f'medqa_{s}']) for s in ['train', 'dev', 'test']):,} questions\n\n"
|
| 59 |
+
stats += f"**Grand Total**: {sum(len(v) for v in self.data.values()):,} questions"
|
| 60 |
+
return stats
|
| 61 |
+
|
| 62 |
+
def get_question(self, dataset: str, index: int) -> Dict:
|
| 63 |
+
"""Get a specific question from a dataset"""
|
| 64 |
+
try:
|
| 65 |
+
return self.data[dataset][index]
|
| 66 |
+
except (KeyError, IndexError):
|
| 67 |
+
return None
|
| 68 |
+
|
| 69 |
+
def search_questions(self, query: str, dataset: str = 'all', max_results: int = 50) -> List[Tuple[str, int, str]]:
|
| 70 |
+
"""Search questions by keyword"""
|
| 71 |
+
results = []
|
| 72 |
+
query_lower = query.lower()
|
| 73 |
+
|
| 74 |
+
datasets_to_search = list(self.data.keys()) if dataset == 'all' else [dataset]
|
| 75 |
+
|
| 76 |
+
for ds in datasets_to_search:
|
| 77 |
+
for idx, q in enumerate(self.data[ds]):
|
| 78 |
+
# Search in question text
|
| 79 |
+
question_text = q.get('question', q.get('Question', ''))
|
| 80 |
+
if query_lower in question_text.lower():
|
| 81 |
+
preview = question_text[:100] + "..." if len(question_text) > 100 else question_text
|
| 82 |
+
results.append((ds, idx, preview))
|
| 83 |
+
|
| 84 |
+
if len(results) >= max_results:
|
| 85 |
+
return results
|
| 86 |
+
|
| 87 |
+
return results
|
| 88 |
+
|
| 89 |
+
# Initialize database
|
| 90 |
+
print("π Initializing MedQA Explorer...")
|
| 91 |
+
db = MedQADatabase()
|
| 92 |
+
|
| 93 |
+
# ============================================================================
|
| 94 |
+
# GRADIO INTERFACE FUNCTIONS
|
| 95 |
+
# ============================================================================
|
| 96 |
+
|
| 97 |
+
def format_question_display(question_data: Dict, dataset: str) -> str:
|
| 98 |
+
"""Format question data for display"""
|
| 99 |
+
|
| 100 |
+
if not question_data:
|
| 101 |
+
return "β Question not found"
|
| 102 |
+
|
| 103 |
+
# Handle different data formats
|
| 104 |
+
if dataset == 'medgemini':
|
| 105 |
+
return format_medgemini_question(question_data)
|
| 106 |
+
else:
|
| 107 |
+
return format_medqa_question(question_data)
|
| 108 |
+
|
| 109 |
+
def format_medgemini_question(q: Dict) -> str:
|
| 110 |
+
"""Format Med-Gemini question"""
|
| 111 |
+
html = f"""
|
| 112 |
+
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
| 113 |
+
<h2 style="color: white; margin: 0;">π¬ Med-Gemini Question</h2>
|
| 114 |
+
</div>
|
| 115 |
+
|
| 116 |
+
<div style="background: #f8f9fa; padding: 20px; border-radius: 8px; margin-bottom: 20px;">
|
| 117 |
+
<h3>π Question</h3>
|
| 118 |
+
<p style="font-size: 16px; line-height: 1.6;">{q.get('question', 'N/A')}</p>
|
| 119 |
+
</div>
|
| 120 |
+
|
| 121 |
+
<div style="background: #fff; padding: 20px; border-radius: 8px; margin-bottom: 20px; border: 2px solid #e0e0e0;">
|
| 122 |
+
<h3>π€ Answer Options</h3>
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
+
# Display options
|
| 126 |
+
options = q.get('options', {})
|
| 127 |
+
correct_answer = q.get('answer_idx', 'N/A')
|
| 128 |
+
|
| 129 |
+
option_labels = ['A', 'B', 'C', 'D', 'E']
|
| 130 |
+
for label in option_labels:
|
| 131 |
+
option_key = f'opa' if label == 'A' else f'op{label.lower()}'
|
| 132 |
+
if option_key in options:
|
| 133 |
+
is_correct = (label == correct_answer)
|
| 134 |
+
color = '#d4edda' if is_correct else '#fff'
|
| 135 |
+
icon = 'β
' if is_correct else 'β'
|
| 136 |
+
|
| 137 |
+
html += f"""
|
| 138 |
+
<div style="background: {color}; padding: 12px; margin: 8px 0; border-radius: 5px; border: 1px solid #ccc;">
|
| 139 |
+
{icon} <strong>{label}.</strong> {options[option_key]}
|
| 140 |
+
</div>
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
html += "</div>"
|
| 144 |
+
|
| 145 |
+
# Show correct answer
|
| 146 |
+
html += f"""
|
| 147 |
+
<div style="background: #d4edda; padding: 15px; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid #28a745;">
|
| 148 |
+
<h3 style="margin-top: 0;">β
Correct Answer</h3>
|
| 149 |
+
<p style="font-size: 18px; font-weight: bold; margin: 0;">{correct_answer}</p>
|
| 150 |
+
</div>
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
# Show explanation if available
|
| 154 |
+
explanation = q.get('explanation', q.get('Explanation', ''))
|
| 155 |
+
if explanation:
|
| 156 |
+
html += f"""
|
| 157 |
+
<div style="background: #e7f3ff; padding: 20px; border-radius: 8px; border-left: 4px solid #2196F3;">
|
| 158 |
+
<h3 style="margin-top: 0;">π‘ Explanation</h3>
|
| 159 |
+
<p style="line-height: 1.6;">{explanation}</p>
|
| 160 |
+
</div>
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
return html
|
| 164 |
+
|
| 165 |
+
def format_medqa_question(q: Dict) -> str:
|
| 166 |
+
"""Format MedQA original question"""
|
| 167 |
+
html = f"""
|
| 168 |
+
<div style="background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
| 169 |
+
<h2 style="color: white; margin: 0;">π MedQA USMLE Question</h2>
|
| 170 |
+
</div>
|
| 171 |
+
|
| 172 |
+
<div style="background: #f8f9fa; padding: 20px; border-radius: 8px; margin-bottom: 20px;">
|
| 173 |
+
<h3>π Question</h3>
|
| 174 |
+
<p style="font-size: 16px; line-height: 1.6;">{q.get('question', 'N/A')}</p>
|
| 175 |
+
</div>
|
| 176 |
+
|
| 177 |
+
<div style="background: #fff; padding: 20px; border-radius: 8px; margin-bottom: 20px; border: 2px solid #e0e0e0;">
|
| 178 |
+
<h3>π€ Answer Options</h3>
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
# Display options
|
| 182 |
+
options = q.get('options', {})
|
| 183 |
+
correct_answer = q.get('answer_idx', 'N/A')
|
| 184 |
+
|
| 185 |
+
for key, value in options.items():
|
| 186 |
+
label = key.replace('op', '').upper() if key.startswith('op') else key
|
| 187 |
+
is_correct = (label == correct_answer)
|
| 188 |
+
color = '#d4edda' if is_correct else '#fff'
|
| 189 |
+
icon = 'β
' if is_correct else 'β'
|
| 190 |
+
|
| 191 |
+
html += f"""
|
| 192 |
+
<div style="background: {color}; padding: 12px; margin: 8px 0; border-radius: 5px; border: 1px solid #ccc;">
|
| 193 |
+
{icon} <strong>{label}.</strong> {value}
|
| 194 |
+
</div>
|
| 195 |
+
"""
|
| 196 |
+
|
| 197 |
+
html += "</div>"
|
| 198 |
+
|
| 199 |
+
# Show correct answer
|
| 200 |
+
html += f"""
|
| 201 |
+
<div style="background: #d4edda; padding: 15px; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid #28a745;">
|
| 202 |
+
<h3 style="margin-top: 0;">β
Correct Answer</h3>
|
| 203 |
+
<p style="font-size: 18px; font-weight: bold; margin: 0;">{correct_answer}</p>
|
| 204 |
+
</div>
|
| 205 |
+
"""
|
| 206 |
+
|
| 207 |
+
# Show metamap if available
|
| 208 |
+
metamap = q.get('metamap_phrases')
|
| 209 |
+
if metamap:
|
| 210 |
+
html += f"""
|
| 211 |
+
<div style="background: #fff3cd; padding: 15px; border-radius: 8px; border-left: 4px solid #ffc107;">
|
| 212 |
+
<h3 style="margin-top: 0;">π₯ Medical Concepts (MetaMap)</h3>
|
| 213 |
+
<p style="line-height: 1.6;">{', '.join(metamap)}</p>
|
| 214 |
+
</div>
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
return html
|
| 218 |
+
|
| 219 |
+
def browse_questions(dataset: str, index: int) -> Tuple[str, str]:
|
| 220 |
+
"""Browse questions by index"""
|
| 221 |
+
total = len(db.data.get(dataset, []))
|
| 222 |
+
|
| 223 |
+
if total == 0:
|
| 224 |
+
return "β No questions in this dataset", f"Dataset: {dataset} (empty)"
|
| 225 |
+
|
| 226 |
+
# Clamp index to valid range
|
| 227 |
+
index = max(0, min(index, total - 1))
|
| 228 |
+
|
| 229 |
+
question = db.get_question(dataset, index)
|
| 230 |
+
html = format_question_display(question, dataset)
|
| 231 |
+
info = f"π Question {index + 1} of {total} | Dataset: {dataset}"
|
| 232 |
+
|
| 233 |
+
return html, info
|
| 234 |
+
|
| 235 |
+
def random_question(dataset: str) -> Tuple[str, str, int]:
|
| 236 |
+
"""Get a random question"""
|
| 237 |
+
total = len(db.data.get(dataset, []))
|
| 238 |
+
|
| 239 |
+
if total == 0:
|
| 240 |
+
return "β No questions in this dataset", f"Dataset: {dataset} (empty)", 0
|
| 241 |
+
|
| 242 |
+
index = random.randint(0, total - 1)
|
| 243 |
+
question = db.get_question(dataset, index)
|
| 244 |
+
html = format_question_display(question, dataset)
|
| 245 |
+
info = f"π² Random Question {index + 1} of {total} | Dataset: {dataset}"
|
| 246 |
+
|
| 247 |
+
return html, info, index
|
| 248 |
+
|
| 249 |
+
def search_interface(query: str, dataset: str) -> str:
|
| 250 |
+
"""Search interface"""
|
| 251 |
+
if not query.strip():
|
| 252 |
+
return "π‘ Enter a search query to find questions"
|
| 253 |
+
|
| 254 |
+
results = db.search_questions(query, dataset)
|
| 255 |
+
|
| 256 |
+
if not results:
|
| 257 |
+
return f"β No results found for '{query}' in {dataset}"
|
| 258 |
+
|
| 259 |
+
html = f"""
|
| 260 |
+
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
| 261 |
+
<h2 style="color: white; margin: 0;">π Search Results: "{query}"</h2>
|
| 262 |
+
<p style="color: white; margin: 5px 0 0 0;">Found {len(results)} results in {dataset}</p>
|
| 263 |
+
</div>
|
| 264 |
+
"""
|
| 265 |
+
|
| 266 |
+
for ds, idx, preview in results[:20]: # Show top 20
|
| 267 |
+
dataset_name = ds.replace('_', ' ').title()
|
| 268 |
+
html += f"""
|
| 269 |
+
<div style="background: #fff; padding: 15px; margin: 10px 0; border-radius: 8px; border-left: 4px solid #667eea;">
|
| 270 |
+
<p style="margin: 0; color: #666; font-size: 12px;"><strong>{dataset_name}</strong> - Question #{idx + 1}</p>
|
| 271 |
+
<p style="margin: 5px 0 0 0;">{preview}</p>
|
| 272 |
+
</div>
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
if len(results) > 20:
|
| 276 |
+
html += f"<p>... and {len(results) - 20} more results</p>"
|
| 277 |
+
|
| 278 |
+
return html
|
| 279 |
+
|
| 280 |
+
# ============================================================================
|
| 281 |
+
# GRADIO APP
|
| 282 |
+
# ============================================================================
|
| 283 |
+
|
| 284 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Database Explorer") as app:
|
| 285 |
+
|
| 286 |
+
gr.Markdown("""
|
| 287 |
+
# π₯ MedQA Database Explorer
|
| 288 |
+
|
| 289 |
+
Explore medical question-answering databases including **Med-Gemini** and **MedQA USMLE**.
|
| 290 |
+
""")
|
| 291 |
+
|
| 292 |
+
# Statistics
|
| 293 |
+
with gr.Accordion("π Database Statistics", open=False):
|
| 294 |
+
gr.Markdown(db.get_stats())
|
| 295 |
+
|
| 296 |
+
# Main interface
|
| 297 |
+
with gr.Tabs():
|
| 298 |
+
|
| 299 |
+
# Browse Tab
|
| 300 |
+
with gr.Tab("π Browse Questions"):
|
| 301 |
+
with gr.Row():
|
| 302 |
+
with gr.Column(scale=1):
|
| 303 |
+
dataset_dropdown = gr.Dropdown(
|
| 304 |
+
choices=['medgemini', 'medqa_train', 'medqa_dev', 'medqa_test'],
|
| 305 |
+
value='medgemini',
|
| 306 |
+
label="Select Database"
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
question_slider = gr.Slider(
|
| 310 |
+
minimum=0,
|
| 311 |
+
maximum=len(db.data['medgemini']) - 1,
|
| 312 |
+
value=0,
|
| 313 |
+
step=1,
|
| 314 |
+
label="Question Number"
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
with gr.Row():
|
| 318 |
+
prev_btn = gr.Button("β¬
οΈ Previous", size="sm")
|
| 319 |
+
random_btn = gr.Button("π² Random", size="sm", variant="primary")
|
| 320 |
+
next_btn = gr.Button("Next β‘οΈ", size="sm")
|
| 321 |
+
|
| 322 |
+
info_text = gr.Textbox(label="Info", interactive=False)
|
| 323 |
+
|
| 324 |
+
with gr.Column(scale=2):
|
| 325 |
+
question_display = gr.HTML()
|
| 326 |
+
|
| 327 |
+
# Update slider max when dataset changes
|
| 328 |
+
def update_slider(dataset):
|
| 329 |
+
max_val = len(db.data.get(dataset, [])) - 1
|
| 330 |
+
return gr.Slider(maximum=max_val, value=0)
|
| 331 |
+
|
| 332 |
+
dataset_dropdown.change(
|
| 333 |
+
fn=update_slider,
|
| 334 |
+
inputs=[dataset_dropdown],
|
| 335 |
+
outputs=[question_slider]
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# Browse functions
|
| 339 |
+
def show_question(dataset, index):
|
| 340 |
+
return browse_questions(dataset, int(index))
|
| 341 |
+
|
| 342 |
+
question_slider.change(
|
| 343 |
+
fn=show_question,
|
| 344 |
+
inputs=[dataset_dropdown, question_slider],
|
| 345 |
+
outputs=[question_display, info_text]
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
dataset_dropdown.change(
|
| 349 |
+
fn=show_question,
|
| 350 |
+
inputs=[dataset_dropdown, question_slider],
|
| 351 |
+
outputs=[question_display, info_text]
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Navigation buttons
|
| 355 |
+
def prev_question(dataset, index):
|
| 356 |
+
new_index = max(0, int(index) - 1)
|
| 357 |
+
html, info = browse_questions(dataset, new_index)
|
| 358 |
+
return html, info, new_index
|
| 359 |
+
|
| 360 |
+
def next_question(dataset, index):
|
| 361 |
+
max_idx = len(db.data.get(dataset, [])) - 1
|
| 362 |
+
new_index = min(max_idx, int(index) + 1)
|
| 363 |
+
html, info = browse_questions(dataset, new_index)
|
| 364 |
+
return html, info, new_index
|
| 365 |
+
|
| 366 |
+
prev_btn.click(
|
| 367 |
+
fn=prev_question,
|
| 368 |
+
inputs=[dataset_dropdown, question_slider],
|
| 369 |
+
outputs=[question_display, info_text, question_slider]
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
next_btn.click(
|
| 373 |
+
fn=next_question,
|
| 374 |
+
inputs=[dataset_dropdown, question_slider],
|
| 375 |
+
outputs=[question_display, info_text, question_slider]
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
random_btn.click(
|
| 379 |
+
fn=random_question,
|
| 380 |
+
inputs=[dataset_dropdown],
|
| 381 |
+
outputs=[question_display, info_text, question_slider]
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# Load first question on start
|
| 385 |
+
app.load(
|
| 386 |
+
fn=show_question,
|
| 387 |
+
inputs=[dataset_dropdown, question_slider],
|
| 388 |
+
outputs=[question_display, info_text]
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# Search Tab
|
| 392 |
+
with gr.Tab("π Search"):
|
| 393 |
+
with gr.Row():
|
| 394 |
+
search_query = gr.Textbox(
|
| 395 |
+
label="Search Query",
|
| 396 |
+
placeholder="Enter keywords (e.g., 'diabetes', 'heart failure', 'treatment')...",
|
| 397 |
+
scale=3
|
| 398 |
+
)
|
| 399 |
+
search_dataset = gr.Dropdown(
|
| 400 |
+
choices=['all', 'medgemini', 'medqa_train', 'medqa_dev', 'medqa_test'],
|
| 401 |
+
value='all',
|
| 402 |
+
label="Search In",
|
| 403 |
+
scale=1
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
search_btn = gr.Button("π Search", variant="primary")
|
| 407 |
+
search_results = gr.HTML()
|
| 408 |
+
|
| 409 |
+
search_btn.click(
|
| 410 |
+
fn=search_interface,
|
| 411 |
+
inputs=[search_query, search_dataset],
|
| 412 |
+
outputs=[search_results]
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
# Also search on Enter key
|
| 416 |
+
search_query.submit(
|
| 417 |
+
fn=search_interface,
|
| 418 |
+
inputs=[search_query, search_dataset],
|
| 419 |
+
outputs=[search_results]
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
gr.Markdown("""
|
| 423 |
+
---
|
| 424 |
+
### π About the Databases
|
| 425 |
+
|
| 426 |
+
**Med-Gemini**: Expert-relabeled medical questions with detailed explanations from Google's Med-Gemini project.
|
| 427 |
+
|
| 428 |
+
**MedQA**: Original USMLE-style medical questions from the MedQA dataset.
|
| 429 |
+
|
| 430 |
+
### π Sources
|
| 431 |
+
- [Med-Gemini Paper](https://arxiv.org/abs/2404.18416)
|
| 432 |
+
- [MedQA Dataset](https://github.com/jind11/MedQA)
|
| 433 |
+
""")
|
| 434 |
+
|
| 435 |
+
if __name__ == "__main__":
|
| 436 |
app.launch()
|
medqa_db.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1c9706f423f219a1bde8929bdcb7d05135e6f998c42e8af2c5b19d830bdf8cc
|
| 3 |
+
size 19150705
|