import cv2 import torch from midas.dpt_depth import DPTDepthModel from midas.midas_net import MidasNet from midas.midas_net_custom import MidasNet_small from midas.transforms import Resize, NormalizeImage, PrepareForNet from torchvision.transforms import Compose default_models = { "dpt_beit_large_512": "weights/dpt_beit_large_512.pt", "dpt_beit_large_384": "weights/dpt_beit_large_384.pt", "dpt_beit_base_384": "weights/dpt_beit_base_384.pt", "dpt_swin2_large_384": "weights/dpt_swin2_large_384.pt", "dpt_swin2_base_384": "weights/dpt_swin2_base_384.pt", "dpt_swin2_tiny_256": "weights/dpt_swin2_tiny_256.pt", "dpt_swin_large_384": "weights/dpt_swin_large_384.pt", "dpt_next_vit_large_384": "weights/dpt_next_vit_large_384.pt", "dpt_levit_224": "weights/dpt_levit_224.pt", "dpt_large_384": "weights/dpt_large_384.pt", "dpt_hybrid_384": "weights/dpt_hybrid_384.pt", "midas_v21_384": "weights/midas_v21_384.pt", "midas_v21_small_256": "weights/midas_v21_small_256.pt", "openvino_midas_v21_small_256": "weights/openvino_midas_v21_small_256.xml", } def load_model(device, model_path, model_type="dpt_large_384", optimize=True, height=None, square=False): """Load the specified network. Args: device (device): the torch device used model_path (str): path to saved model model_type (str): the type of the model to be loaded optimize (bool): optimize the model to half-integer on CUDA? height (int): inference encoder image height square (bool): resize to a square resolution? Returns: The loaded network, the transform which prepares images as input to the network and the dimensions of the network input """ if "openvino" in model_type: from openvino.runtime import Core keep_aspect_ratio = not square if model_type == "dpt_beit_large_512": model = DPTDepthModel( path=model_path, backbone="beitl16_512", non_negative=True, ) net_w, net_h = 512, 512 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_beit_large_384": model = DPTDepthModel( path=model_path, backbone="beitl16_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_beit_base_384": model = DPTDepthModel( path=model_path, backbone="beitb16_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_swin2_large_384": model = DPTDepthModel( path=model_path, backbone="swin2l24_384", non_negative=True, ) net_w, net_h = 384, 384 keep_aspect_ratio = False resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_swin2_base_384": model = DPTDepthModel( path=model_path, backbone="swin2b24_384", non_negative=True, ) net_w, net_h = 384, 384 keep_aspect_ratio = False resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_swin2_tiny_256": model = DPTDepthModel( path=model_path, backbone="swin2t16_256", non_negative=True, ) net_w, net_h = 256, 256 keep_aspect_ratio = False resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_swin_large_384": model = DPTDepthModel( path=model_path, backbone="swinl12_384", non_negative=True, ) net_w, net_h = 384, 384 keep_aspect_ratio = False resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_next_vit_large_384": model = DPTDepthModel( path=model_path, backbone="next_vit_large_6m", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # We change the notation from dpt_levit_224 (MiDaS notation) to levit_384 (timm notation) here, where the 224 refers # to the resolution 224x224 used by LeViT and 384 is the first entry of the embed_dim, see _cfg and model_cfgs of # https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/levit.py # (commit id: 927f031293a30afb940fff0bee34b85d9c059b0e) elif model_type == "dpt_levit_224": model = DPTDepthModel( path=model_path, backbone="levit_384", non_negative=True, head_features_1=64, head_features_2=8, ) net_w, net_h = 224, 224 keep_aspect_ratio = False resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_large_384": model = DPTDepthModel( path=model_path, backbone="vitl16_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid_384": model = DPTDepthModel( path=model_path, backbone="vitb_rn50_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21_384": model = MidasNet(model_path, non_negative=True) net_w, net_h = 384, 384 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) elif model_type == "midas_v21_small_256": model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) elif model_type == "openvino_midas_v21_small_256": ie = Core() uncompiled_model = ie.read_model(model=model_path) model = ie.compile_model(uncompiled_model, "CPU") net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) else: print(f"model_type '{model_type}' not implemented, use: --model_type large") assert False if not "openvino" in model_type: print("Model loaded, number of parameters = {:.0f}M".format(sum(p.numel() for p in model.parameters()) / 1e6)) else: print("Model loaded, optimized with OpenVINO") if "openvino" in model_type: keep_aspect_ratio = False if height is not None: net_w, net_h = height, height transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) if not "openvino" in model_type: model.eval() if optimize and (device == torch.device("cuda")): if not "openvino" in model_type: model = model.to(memory_format=torch.channels_last) model = model.half() else: print("Error: OpenVINO models are already optimized. No optimization to half-float possible.") exit() if not "openvino" in model_type: model.to(device) return model, transform, net_w, net_h