from typing import Any, Dict, List, Optional import cv2 import gradio import facefusion.globals from facefusion import wording from facefusion.core import conditional_append_reference_faces from facefusion.face_store import clear_static_faces, get_reference_faces, clear_reference_faces from facefusion.typing import Frame, Face, FaceSet from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension, read_static_image, read_static_images from facefusion.face_analyser import get_average_face, clear_face_analyser from facefusion.content_analyser import analyse_frame from facefusion.processors.frame.core import load_frame_processor_module from facefusion.filesystem import is_image, is_video from facefusion.uis.typing import ComponentName from facefusion.uis.core import get_ui_component, register_ui_component PREVIEW_IMAGE : Optional[gradio.Image] = None PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None def render() -> None: global PREVIEW_IMAGE global PREVIEW_FRAME_SLIDER preview_image_args: Dict[str, Any] =\ { 'label': wording.get('preview_image_label'), 'interactive': False } preview_frame_slider_args: Dict[str, Any] =\ { 'label': wording.get('preview_frame_slider_label'), 'step': 1, 'minimum': 0, 'maximum': 100, 'visible': False } conditional_append_reference_faces() source_frames = read_static_images(facefusion.globals.source_paths) source_face = get_average_face(source_frames) reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None if is_image(facefusion.globals.target_path): target_frame = read_static_image(facefusion.globals.target_path) preview_frame = process_preview_frame(source_face, reference_faces, target_frame) preview_image_args['value'] = normalize_frame_color(preview_frame) if is_video(facefusion.globals.target_path): temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number) preview_frame = process_preview_frame(source_face, reference_faces, temp_frame) preview_image_args['value'] = normalize_frame_color(preview_frame) preview_image_args['visible'] = True preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number preview_frame_slider_args['maximum'] = count_video_frame_total(facefusion.globals.target_path) preview_frame_slider_args['visible'] = True PREVIEW_IMAGE = gradio.Image(**preview_image_args) PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args) register_ui_component('preview_frame_slider', PREVIEW_FRAME_SLIDER) def listen() -> None: PREVIEW_FRAME_SLIDER.release(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE) multi_one_component_names : List[ComponentName] =\ [ 'source_image', 'target_image', 'target_video' ] for component_name in multi_one_component_names: component = get_ui_component(component_name) if component: for method in [ 'upload', 'change', 'clear' ]: getattr(component, method)(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE) multi_two_component_names : List[ComponentName] =\ [ 'target_image', 'target_video' ] for component_name in multi_two_component_names: component = get_ui_component(component_name) if component: for method in [ 'upload', 'change', 'clear' ]: getattr(component, method)(update_preview_frame_slider, outputs = PREVIEW_FRAME_SLIDER) select_component_names : List[ComponentName] =\ [ 'reference_face_position_gallery', 'face_analyser_order_dropdown', 'face_analyser_age_dropdown', 'face_analyser_gender_dropdown' ] for component_name in select_component_names: component = get_ui_component(component_name) if component: component.select(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE) change_one_component_names : List[ComponentName] =\ [ 'face_debugger_items_checkbox_group', 'face_enhancer_model_dropdown', 'face_enhancer_blend_slider', 'frame_enhancer_model_dropdown', 'frame_enhancer_blend_slider', 'face_selector_mode_dropdown', 'reference_face_distance_slider', 'face_mask_types_checkbox_group', 'face_mask_blur_slider', 'face_mask_padding_top_slider', 'face_mask_padding_bottom_slider', 'face_mask_padding_left_slider', 'face_mask_padding_right_slider', 'face_mask_region_checkbox_group' ] for component_name in change_one_component_names: component = get_ui_component(component_name) if component: component.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE) change_two_component_names : List[ComponentName] =\ [ 'frame_processors_checkbox_group', 'face_swapper_model_dropdown', 'face_detector_model_dropdown', 'face_detector_size_dropdown', 'face_detector_score_slider' ] for component_name in change_two_component_names: component = get_ui_component(component_name) if component: component.change(clear_and_update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE) def clear_and_update_preview_image(frame_number : int = 0) -> gradio.Image: clear_face_analyser() clear_reference_faces() clear_static_faces() return update_preview_image(frame_number) def update_preview_image(frame_number : int = 0) -> gradio.Image: conditional_append_reference_faces() source_frames = read_static_images(facefusion.globals.source_paths) source_face = get_average_face(source_frames) reference_face = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None if is_image(facefusion.globals.target_path): target_frame = read_static_image(facefusion.globals.target_path) preview_frame = process_preview_frame(source_face, reference_face, target_frame) preview_frame = normalize_frame_color(preview_frame) return gradio.Image(value = preview_frame) if is_video(facefusion.globals.target_path): temp_frame = get_video_frame(facefusion.globals.target_path, frame_number) preview_frame = process_preview_frame(source_face, reference_face, temp_frame) preview_frame = normalize_frame_color(preview_frame) return gradio.Image(value = preview_frame) return gradio.Image(value = None) def update_preview_frame_slider() -> gradio.Slider: if is_video(facefusion.globals.target_path): video_frame_total = count_video_frame_total(facefusion.globals.target_path) return gradio.Slider(maximum = video_frame_total, visible = True) return gradio.Slider(value = None, maximum = None, visible = False) def process_preview_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame: temp_frame = resize_frame_dimension(temp_frame, 640, 640) if analyse_frame(temp_frame): return cv2.GaussianBlur(temp_frame, (99, 99), 0) for frame_processor in facefusion.globals.frame_processors: frame_processor_module = load_frame_processor_module(frame_processor) if frame_processor_module.pre_process('preview'): temp_frame = frame_processor_module.process_frame( source_face, reference_faces, temp_frame ) return temp_frame