import os os.environ["TOKENIZERS_PARALLELISM"] = "false" print("Importing") import streamlit as st import torch from docquery.pipeline import get_pipeline from docquery.document import load_bytes def ensure_list(x): if isinstance(x, list): return x else: return [x] @st.experimental_singleton def construct_pipeline(): device = "cuda" if torch.cuda.is_available() else "cpu" ret = get_pipeline(device=device) return ret @st.cache def run_pipeline(question, document): return construct_pipeline()(question=question, **document.context) st.title("DocQuery: Query Documents Using NLP") file = st.file_uploader("Upload a PDF or Image document") question = st.text_input("QUESTION", "") if file is not None: col1, col2 = st.columns(2) document = load_bytes(file, file.name) col1.image(document.preview, use_column_width=True) if file is not None and question is not None and len(question) > 0: predictions = run_pipeline(question=question, document=document) col2.header("Answers") for p in ensure_list(predictions): col2.subheader(f"{ p['answer'] }: ({round(p['score'] * 100, 1)}%)") "DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them." "[Github Repo](https://github.com/impira/docquery)"