# Importing libraries
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
from llama_cpp import Llama
import gradio as gr
import psutil
# Initing things
llm = Llama(model_path="./model.bin") # LLaMa model
llama_model_name = "TheBloke/Llama-2-13B-chat-GGUF"
translator_tokenizer = M2M100Tokenizer.from_pretrained( # tokenizer for translator
"facebook/m2m100_1.2B", cache_dir="translator/"
)
translator_model = M2M100ForConditionalGeneration.from_pretrained( # translator model
"facebook/m2m100_1.2B", cache_dir="translator/"
)
translator_model.eval()
# Preparing things to work
translator_tokenizer.src_lang = "en"
title = "llama.cpp API"
desc = '''
Hello, world!
This is showcase how to make own server with Llama2 model.
I'm using here 7b model just for example. Also here's only CPU power.
But you can use GPU power as well!
How to GPU?
Change `CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS`
in Dockerfile on `CMAKE_ARGS="-DLLAMA_CUBLAS=on"`
. Also you can try `DLLAMA_CLBLAST`
, `DLLAMA_METAL`
or `DLLAMA_METAL`
.
Powered by llama-cpp-python, Quart and Uvicorn.
How to test it on own machine?
You can install Docker, build image and run it. I made `run-docker.sh`
for ya. To stop container run `docker ps`
, find name of container and run `docker stop _dockerContainerName_`
Or you can once follow steps in Dockerfile and try it on your machine, not in Docker.
''' + f"Memory used: {psutil.virtual_memory()[2]}
" + '''
'''
# Loading prompt
with open('system.prompt', 'r', encoding='utf-8') as f:
prompt = f.read()
# this model was loaded from https://hf.co/models
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
device = 0 if torch.cuda.is_available() else -1
LANGS = ["ace_Arab", "eng_Latn", "fra_Latn", "spa_Latn"]
def t1ranslate(text, src_lang, tgt_lang):
try:
maxTokens = data.get("max_tokens", 64)
if isinstance(data.get("system_prompt"), str):
userPrompt = data.get("system_prompt") + "\n\nUser: " + data['request'] + "\nAssistant: "
else:
userPrompt = prompt + "\n\nUser: " + data['request'] + "\nAssistant: "
except:
return {"error": "Not enough data", "output": "Oops! Error occured! If you're a developer, using this API, check 'error' key."}, 400
try:
output = llm(userPrompt, max_tokens=maxTokens, stop=["User:", "\n"], echo=False)
text = output["choices"][0]["text"]
# i allowed only certain languages:
# russian (ru), ukranian (uk), chinese (zh)
if isinstance(data.get("target_lang"), str) and data.get("target_lang").lower() in ["ru", "uk", "zh"]:
encoded_input = translator_tokenizer(output, return_tensors="pt")
generated_tokens = translator_model.generate(
**encoded_input, forced_bos_token_id=translator_tokenizer.get_lang_id(data.get("target_lang"))
)
translated_text = translator_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return {"output": text, "translated_output": translated_text}
return {"output": text}
except Exception as e:
print(e)
return {"error": str(e), "output": "Oops! Internal server error. Check the logs. If you're a developer, using this API, check 'error' key."}, 500
def translate(request: str, max_tokens: int = 256, language: str = "en", custom_prompt: str = None):
try:
maxTokens = max_tokens if 16 <= max_tokens <= 256 else 64
if isinstance(custom_prompt, str):
userPrompt = custom_prompt + "\n\nUser: " + request + "\nAssistant: "
else:
userPrompt = prompt + "\n\nUser: " + request + "\nAssistant: "
except:
return "Not enough data! Check that you passed all needed data."
try:
output = llm(userPrompt, max_tokens=maxTokens, stop=["User:", "\n"], echo=False)
text = output["choices"][0]["text"]
# i allowed only certain languages (its not discrimination, its just other popular language on my opinion!!!):
# russian (ru), ukranian (uk), chinese (zh)
if language in ["ru", "uk", "zh"]:
encoded_input = translator_tokenizer(output, return_tensors="pt")
generated_tokens = translator_model.generate(
**encoded_input, forced_bos_token_id=translator_tokenizer.get_lang_id(language)
)
translated_text = translator_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return translated_text
return text
except Exception as e:
print(e)
return "Oops! Internal server error. Check the logs of space/instance."
demo = gr.Interface(
fn=translate,
inputs=[
gr.components.Textbox(label="Input"),
gr.components.Number(value=256),
gr.components.Dropdown(label="Target Language", value="en", choices=["en", "ru", "uk", "zh"]),
gr.components.Textbox(label="Custom system prompt"),
],
outputs=["text"],
title=title,
description=desc
)
demo.queue()
demo.launch()