# Importing libraries from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration from quart import Quart, request from llama_cpp import Llama import psutil # Initing things app = Quart(__name__) # Quart app llm = Llama(model_path="./model.bin") # LLaMa model llama_model_name = "TheBloke/WizardLM-1.0-Uncensored-Llama2-13B-GGUF" translator_tokenizer = M2M100Tokenizer.from_pretrained( # tokenizer for translator "facebook/m2m100_418M", cache_dir="translator/" ) translator_model = M2M100ForConditionalGeneration.from_pretrained( # translator model "facebook/m2m100_418M", cache_dir="translator/" ) translator_model.eval() # Preparing things to work translator_tokenizer.src_lang = "en" # Loading prompt with open('system.prompt', 'r', encoding='utf-8') as f: prompt = f.read() # Defining @app.post("/request") async def echo(): try: data = await request.get_json() maxTokens = data.get("max_tokens", 64) if isinstance(data.get("system_prompt"), str): userPrompt = data.get("system_prompt") + "\n\nUser: " + data['request'] + "\nAssistant: " else: userPrompt = prompt + "\n\nUser: " + data['request'] + "\nAssistant: " except: return {"error": "Not enough data", "output": "Oops! Error occured! If you're a developer, using this API, check 'error' key."}, 400 try: output = llm(userPrompt, max_tokens=maxTokens, stop=["User:", "\n"], echo=False) text = output["choices"][0]["text"] # i allowed only certain languages: # russian (ru), ukranian (uk), chinese (zh) if isinstance(data.get("target_lang"), str) and data.get("target_lang").lower() in ["ru", "uk", "zh"]: encoded_input = translator_tokenizer(output, return_tensors="pt") generated_tokens = translator_model.generate( **encoded_input, forced_bos_token_id=translator_tokenizer.get_lang_id(data.get("target_lang")) ) translated_text = translator_tokenizer.batch_decode( generated_tokens, skip_special_tokens=True )[0] return {"output": text, "translated_output": translated_text} return {"output": text} except Exception as e: print(e) return {"error": str(e), "output": "Oops! Internal server error. Check the logs. If you're a developer, using this API, check 'error' key."}, 500 @app.get("/") async def get(): return '''

Hello, world!

This is showcase how to make own server with Llama2 model.
I'm using here 7b model just for example. Also here's only CPU power.
But you can use GPU power as well!

How to GPU?

Change `CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS` in Dockerfile on `CMAKE_ARGS="-DLLAMA_CUBLAS=on"`. Also you can try `DLLAMA_CLBLAST` or `DLLAMA_METAL`.

How to test it on own machine?

You can install Docker, build image and run it. I made `run-docker.sh` for ya. To stop container run `docker ps`, find name of container and run `docker stop _dockerContainerName_`
Or you can once follow steps in Dockerfile and try it on your machine, not in Docker.

''' + f"Memory used: {psutil.virtual_memory()[2]}
" + ''' ''' + ''' Powered by llama-cpp-python, Quart and Uvicorn.

'''