immelstorun commited on
Commit
e893152
1 Parent(s): a14fce4

Delete app2.py

Browse files
Files changed (1) hide show
  1. app2.py +0 -42
app2.py DELETED
@@ -1,42 +0,0 @@
1
- import os
2
- from speechbrain.pretrained.interfaces import foreign_class
3
- import gradio as gr
4
-
5
- import warnings
6
- warnings.filterwarnings("ignore")
7
-
8
- # Loading the speechbrain emotion detection model
9
- learner = foreign_class(
10
- source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
11
- pymodule_file="custom_interface.py",
12
- classname="CustomEncoderWav2vec2Classifier"
13
- )
14
-
15
- # Building prediction function for gradio
16
- emotion_dict = {
17
- 'sad': 'Sad',
18
- 'hap': 'Happy',
19
- 'ang': 'Anger',
20
- 'fea': 'Fear',
21
- 'sur': 'Surprised',
22
- 'neu': 'Neutral'
23
- }
24
-
25
- def predict_emotion(file_path):
26
- # Since we get the file path from the dropdown, we don't need to access the `.name` property
27
- out_prob, score, index, text_lab = learner.classify_file(file_path)
28
- return emotion_dict[text_lab[0]]
29
-
30
- # Folder containing audio files
31
- folder = "prerecorded"
32
-
33
- # Assuming that the 'prerecorded' folder is in the current working directory
34
- # Change the working directory path if necessary
35
- audio_files = [os.path.join(folder, file) for file in os.listdir(folder) if file.endswith('.wav')]
36
-
37
- # Loading gradio interface with dropdown for audio selection
38
- inputs = gr.inputs.Dropdown(audio_files, label="Select Audio File")
39
- outputs = "text"
40
- title = "Machine Learning Emotion Detection"
41
- description = "Gradio demo for Emotion Detection. To use it, select an audio file from the dropdown and click 'Submit'. Read more at the links below."
42
- gr.Interface(predict_emotion, inputs, outputs, title=title, description=description).launch()