# Copyright 2023 Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from .attention import SpatioTemporalTransformerModel from .resnet import DownsamplePseudo3D, ResnetBlockPseudo3D, UpsamplePseudo3D import glob import json from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.utils.checkpoint from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import BaseOutput, logging from diffusers.models.embeddings import TimestepEmbedding, Timesteps from .unet_3d_blocks import ( CrossAttnDownBlockPseudo3D, CrossAttnUpBlockPseudo3D, DownBlockPseudo3D, UNetMidBlockPseudo3DCrossAttn, UpBlockPseudo3D, get_down_block, get_up_block, ) from .resnet import PseudoConv3d from diffusers.models.cross_attention import AttnProcessor from typing import Dict def set_zero_parameters(module): for p in module.parameters(): p.detach().zero_() return module # ControlNet: Zero Convolution def zero_conv(channels): return set_zero_parameters(PseudoConv3d(channels, channels, 1, padding=0)) class ControlNetInputHintBlock(nn.Module): def __init__(self, hint_channels: int = 3, channels: int = 320): super().__init__() # Layer configurations are from reference implementation. self.input_hint_block = nn.Sequential( PseudoConv3d(hint_channels, 16, 3, padding=1), nn.SiLU(), PseudoConv3d(16, 16, 3, padding=1), nn.SiLU(), PseudoConv3d(16, 32, 3, padding=1, stride=2), nn.SiLU(), PseudoConv3d(32, 32, 3, padding=1), nn.SiLU(), PseudoConv3d(32, 96, 3, padding=1, stride=2), nn.SiLU(), PseudoConv3d(96, 96, 3, padding=1), nn.SiLU(), PseudoConv3d(96, 256, 3, padding=1, stride=2), nn.SiLU(), set_zero_parameters(PseudoConv3d(256, channels, 3, padding=1)), ) def forward(self, hint: torch.Tensor): return self.input_hint_block(hint) class ControlNetPseudoZeroConv3dBlock(nn.Module): def __init__( self, block_out_channels: Tuple[int] = (320, 640, 1280, 1280), down_block_types: Tuple[str] = ( "CrossAttnDownBlockPseudo3D", "CrossAttnDownBlockPseudo3D", "CrossAttnDownBlockPseudo3D", "DownBlockPseudo3D", ), layers_per_block: int = 2, ): super().__init__() self.input_zero_conv = zero_conv(block_out_channels[0]) zero_convs = [] for i, down_block_type in enumerate(down_block_types): output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 for _ in range(layers_per_block): zero_convs.append(zero_conv(output_channel)) if not is_final_block: zero_convs.append(zero_conv(output_channel)) self.zero_convs = nn.ModuleList(zero_convs) self.mid_zero_conv = zero_conv(block_out_channels[-1]) def forward( self, down_block_res_samples: List[torch.Tensor], mid_block_sample: torch.Tensor, ) -> List[torch.Tensor]: outputs = [] outputs.append(self.input_zero_conv(down_block_res_samples[0])) for res_sample, zero_conv in zip(down_block_res_samples[1:], self.zero_convs): outputs.append(zero_conv(res_sample)) outputs.append(self.mid_zero_conv(mid_block_sample)) return outputs