import os import gradio as gr from transformers import AutoTokenizer, AutoModel from scipy.special import softmax from huggingface_hub import login # Load environment variables from dotenv import load_dotenv load_dotenv() login(os.getenv("access_token")) # Requirements model_path = "imalexianne/distilbert-base-uncased" # tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModel.from_pretrained(model_path) # Preprocessing function def preprocess(text): new_text = [] for x in text.split(" "): x = "@user" if x.startswith("@") and len(x) > 1 else x x = "http" if x.startswith("http") else x new_text.append(x) return " ".join(new_text) # Function to process the input and return prediction def sentiment_analysis(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors="pt") output = model(**encoded_input) scores_ = output.logits[0].detach().numpy() scores_ = softmax(scores_) # Format output dict of scores labels = ["Negative", "Neutral", "Positive"] scores = {l: float(s) for (l, s) in zip(labels, scores_)} return scores # Gradio app interface app = gr.Interface( fn=sentiment_analysis, inputs=gr.Textbox("Write your text here..."), outputs="label", title="Sentiment Analysis of Tweets on COVID-19 Vaccines", description="Sentiment Analysis of text based on tweets about COVID-19 Vaccines using a fine-tuned 'distilbert-base-uncased' model", examples=[["Covid vaccination has no positive impact"]] ) app.launch()