import dill import json import streamlit as st import os from haystack.utils import convert_files_to_docs from haystack.schema import Answer from haystack.document_stores import InMemoryDocumentStore from haystack.pipelines import ExtractiveQAPipeline from haystack.nodes import FARMReader, TfidfRetriever import logging from markdown import markdown from annotated_text import annotation from streamlit_lottie import st_lottie st.set_page_config(page_title="QA-project", page_icon="📇") os.environ['TOKENIZERS_PARALLELISM'] = "false" DATA_DIR = './dataset' DOCS_PATH = os.path.join(DATA_DIR, 'all_docs_36838.pkl') LOTTIE_PATH = './img/108423-search-for-documents.json' PROG_TITLE = "QA project Demo" # Adjust to a question that you would like users to see in the search bar when they load the UI: DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "Что делает Домашняя бухгалтерия?") DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "Домашняя бухгалтерия позволяет вести счета в разных валютах") def place_header_center(text, lottie_data): img, title= st.columns([1,3]) with img: st_lottie(lottie_data, height=150) with title: st.title(text) @st.experimental_memo def get_lottie(path): with open(path, 'r', errors='ignore') as f: lottie_data = json.load(f) return lottie_data def load_and_write_data(document_store): with open(DOCS_PATH, "rb") as f: docs = dill.load(f) document_store.write_documents(docs) def get_backlink(result): if result.get("document", None): doc = result["document"] if isinstance(doc, dict): if doc.get("meta", None): if isinstance(doc["meta"], dict): if doc["meta"].get("url", None): return doc["meta"]["url"] return None def get_doc_name(result): if result.get("document", None): doc = result["document"] if isinstance(doc, dict): if doc.get("meta", None): if isinstance(doc["meta"], dict): if doc["meta"].get("name", None): return doc["meta"]["name"] return None def get_doc_reg_id(result): if result.get("document", None): doc = result["document"] if isinstance(doc, dict): if doc.get("meta", None): if isinstance(doc["meta"], dict): if doc["meta"].get("reg_id", None): return doc["meta"]["reg_id"] return None # Haystack Components # @st.cache(allow_output_mutation=True) # def start_haystack(): document_store = InMemoryDocumentStore() # use_bm25=True load_and_write_data(document_store) retriever = TfidfRetriever(document_store=document_store) reader = FARMReader(model_name_or_path="DeepPavlov/rubert-base-cased-sentence", use_gpu=False, num_processes=1) pipeline = ExtractiveQAPipeline(reader, retriever) def set_state_if_absent(key, value): if key not in st.session_state: st.session_state[key] = value set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP) set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP) set_state_if_absent("results", None) set_state_if_absent("predictions", None) def reset_results(*args): st.session_state.results = None # Streamlit App lottie_data = get_lottie(LOTTIE_PATH) place_header_center(PROG_TITLE, lottie_data) st.markdown(""" This QA demo uses a [Haystack Extractive QA Pipeline](https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains documents about different program modules Go ahead and ask questions about the program modules functionality! """, unsafe_allow_html=True) question = st.text_input("", value=st.session_state.question, max_chars=100, on_change=reset_results) def ask_question(question): prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}) answers = prediction["answers"] results = [] for answer in answers: answer = answer.to_dict() if answer.get("answer", None): results.append( { "context": "..." + answer["context"] + "...", "answer": answer.get("answer", None), "source": answer["meta"]["name"], "relevance": round(answer["score"] * 100, 2), "document": [doc for doc in response["documents"] if doc["id"] == answer["document_id"]][0], "offset_start_in_doc": answer["offsets_in_document"][0]["start"], "_raw": answer, } ) else: results.append( { "context": None, "answer": None, "document": None, "relevance": round(answer["score"] * 100, 2), "_raw": answer, } ) return results, prediction if question: with st.spinner("🕰️    Performing semantic search on program modules..."): try: msg = 'Asked ' + question logging.info(msg) st.session_state.results, st.session_state.predictions = ask_question(question) except Exception as e: logging.exception(e) if st.session_state.results: st.write('## Top Results') for count, result in enumerate(st.session_state.results): if result["answer"]: answer, context = result["answer"], result["context"] start_idx = context.find(answer) end_idx = start_idx + len(answer) st.write( markdown(context[:start_idx] + str(annotation(body=answer, label="ANSWER", background="#ff700f", color='#ffffff')) + context[end_idx:]), unsafe_allow_html=True, ) source = "" url = get_backlink(result) name = get_doc_name(result) reg_id = get_doc_reg_id(result) if name: source += f"[{result['document']['meta']['name']}]" if url: source += f"({result['document']['meta']['url']})" if reg_id: source += f"({result['document']['meta']['reg_id']})" if source: st.markdown(f"**Relevance:** {result['relevance']} - **Source:** {source}") else: st.markdown(f"**Relevance:** {result['relevance']}") else: st.info( "🤔    Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!" )